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A short note about Noether’s theorem for translational symmetry in a Hamiltonian system.

I. TRANSLATIONAL SYMMETRY IN
HAMILTONIAN

Let us consider some Hamiltonian:
H(o()) = [ 0(6.0,6) 1

where 1 is the energy density (including the gradient
terms). Let’s suppose we now perform a spatial transla-
tion or on the scalar field ¢(r):

Or) = 9{r = 01) = 6(r) Zradud. (2)
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The energy density must also be translated via dr, i.e.
YE) = (e = 01) = 9(0) radets. ()
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Thus the change in the energy density due this spatial
translation is:

0 = —0r,,0,7. (4)
However, we also know that:
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If ¢(r) remains in equilibrium before and after the trans-
formation, ¢(r) must then satisfy Euler-Lagrange equa-

tion and the terms inside the square bracket above van-
ish. Thus we have:
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(5'¢ = 8a (Wé(b) and 5w = 57”a3a1/). (6)
In other words,
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Jap = constant  (9)

We call J,s the Noether current.
For a symmetric Landau energy, we have:
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and the Noether current is:
K
Tap = K020)(959) = |1(8) + 5IV6[| 85 = constant
(11)

In particular in one-dimension o = 8 = x, we get:
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Tz = g <gi> — f(¢) = constant. (12)



