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1 Coarsening process in Cahn-Hilliard equation
1.1 The continuum hypothesis
Let us consider a box of fluid with size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 (see figure below). The volume of the system
is 𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧.

Continuum hypothesis. We assume that we can divide the system into many many small volume
elements 𝑑𝑉 ’s, such that each volume element 𝑑𝑉 contains a large number of molecules ∼ 1023,
but 𝑑𝑉 is still small compared to the overall system volume 𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧 . We can then define the
hydrodynamic variable 𝜌(r, 𝑡), which is the mass density of the fluid. Physically, 𝜌(r, 𝑡) is defined
such that:

𝜌(r, 𝑡) 𝑑𝑉 = mass of the fluid inside the volume element 𝑑𝑉 , located at r and at time 𝑡. (1)

So if we want to find the total mass of the fluid, we integrate 𝜌(r, 𝑡) over the whole system.
In the figure below, the volume elements 𝑑𝑉 ’s are represented by pixels and the colour of this
pixel represents the value of the fluid density 𝜌(r, 𝑡) at that point. In fluids, there are also other
hydrodynamic variables of interest such as pressure 𝑝(r, 𝑡) and fluid velocity u(r, 𝑡), but we will not
worry about these in this Notebook.

[4]: from IPython.display import Image
Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-coarsening/

↪master/figures/density-field.png')
[4]:
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We consider the following problems involving phase separation: 1. Two-phase, one-component sys-
tems, e.g., liquid water and water vapour phase separation 2. One-phase, two-component systems,
e.g., liquid water and liquid oil phase separation.

For both cases, the phase-separation dynamics can be described by a single scalar order parameter
𝜙(r, 𝑡) (which is sometimes also called the rescaled density).

For Case 1, 𝜙(r, 𝑡) is defined to be the rescaled density, relative to the critical density 𝜌𝑐:

𝜙(r, 𝑡) = 𝜌(r, 𝑡) − 𝜌𝑐
𝜌𝑐

. (2)

In the above equation, 𝜌(r, 𝑡) is the mass density of the fluid (which can be gas/liquid/both) at
position r and at time 𝑡, and 𝜌𝑐 is the density of the fluid at the critical point. Basically, below
the critical temperature, the liquid phase has density 𝜌(r, 𝑡) ≃ 𝜌𝑙 and the gas phase has density
𝜌(r, 𝑡) ≃ 𝜌𝑔 < 𝜌𝑙. As we approach the critical temperature, the density difference between the
liquid and the gas phase goes to zero, i.e. 𝜌𝑙 − 𝜌𝑔 → 0. Finally beyond the critical point, there
is no distinction between liquid and gas. Thus from the definition of 𝜙(r, 𝑡) above, 𝜙(r, 𝑡) > 0
corresponds to the liquid phase and 𝜙(r, 𝑡) < 0 corresponds to the gas phase.

For Case 2, 𝜙(r, 𝑡) is defined to be the relative densities between the two molecules, say A and B:

𝜙(r, 𝑡) = 2𝜌(r, 𝑡) − 𝜌𝐴 − 𝜌𝐵
𝜌𝐴 − 𝜌𝐵

. (3)

In the above equation 𝜌𝐴 is the density of pure A molecules and 𝜌𝐵 is the density of the pure B
molecules. Thus from the definition above, 𝜙(r, 𝑡) ≃ 1 indicates that the fluid contains pure A
molecules and 𝜙(r, 𝑡) ≃ −1 indicates that the fluid contains pure B molecules.

By conservation of mass and assuming that there is no chemical reaction 𝐴 ↔ 𝐵, it follows that
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the integral:
𝜙0 = 1

𝑉 ∫
𝑉

𝑑𝑉 𝜙(r, 𝑡)
⏟⏟⏟⏟⏟

total amount of fluid

= constant. (4)

We call the constant 𝜙0 to be the global density, which is fixed by the initial condition.

Local equilibrium hypothesis. We assume each fluid element 𝑑𝑉 to be in a state of thermody-
namic equilibrium locally with a given temperature, entropy, internal energy, pressure, chemical
potential, etc. Note that this does not mean that the whole system is in a state of global thermo-
dynamic equilibrium because a fluid element 𝑑𝑉 at r might have a different pressure or chemical
potential compared to the fluid element 𝑑𝑉 at r′. However over time, if we leave the system to
sit long enough, energy and mass can be exchanged between different fluid elements 𝑑𝑉 ’s until a
global thermodynamic equilibrium is reached.

Since each fluid element 𝑑𝑉 is in thermodynamic equilibrium locally, we can define the free energy
of this fluid element to be:

𝑔(𝜙, ∇𝜙) 𝑑𝑉 = free energy of the fluid element 𝑑𝑉 , located at r and at time 𝑡. (5)
We call 𝑔(𝜙, ∇𝜙) to be the free energy density. In general 𝑔 depends on the order parameter 𝜙 and
its gradient ∇𝜙. Landau and Ginzburg’s idea is to Taylor expand 𝑔 around the critical point. At
the critical point 𝜙 = 0 and thus we can expand 𝑔 for small 𝜙:

𝑔(𝜙, ∇𝜙) = 𝛼
2 𝜙2 + 𝛽

4 𝜙4
⏟⏟⏟⏟⏟

local

+ 𝜅
2 |∇𝜙|2⏟
semi-local

. (6)

Note that, we have ignored the cubic term 𝜙3, because we can redefine 𝜙 to eliminate this cubic
term, making it unnecessary. We have also ignored the linear term 𝜙 because this does not
contribute the dynamics, as we shall see below. Finally, ∼ |∇𝜙|2 is the smallest scalar term we
can form using ∇ and 𝜙. Note that the first two terms above are purely local as they only depend
on 𝜙. The last term in the equation above is semi-local, because it depends on the gradient ∇𝜙.
This means to calculate the last term in the equation above, we need some information about the
neighbouring fluid elements 𝑑𝑉 ’s.

Coarse graining. When we did the Landau expansion, i.e. Taylor expansion around 𝜙 = 0
above, we get various phenomenological parameters such as 𝛼 and 𝛽, which are unknown. In this
section, we will investigate how to derive these parameters from microscopic models through coarse-
graining. Let us consider some fluid, as shown in the figure on the left below. Yellow indicates the
liquid phase (𝜙 ≃ 1) while dark blue indicates the gas phase (𝜙 ≃ −1).

As before, we can divide the system into many many volume elements 𝑑𝑉 ’s. Let us just consider
one such volume element 𝑑𝑉 , which is indicated by dark square in the figure below. Inside this
volume element, we have a large number of molecules, which are indicated by the blue discs in the
figure on the right below. Let us denote 𝑁𝑝 to be the number of particles/fluid molecules, e.g.
H2O, inside this volume element. (In the figure we have 𝑁𝑝 = 36 particles for illustration purposes,
but in reality 𝑁𝑝 is very large!) Let us suppose that we can further divide the volume element 𝑑𝑉
into 𝑁 lattice cells, as shown in the figure on the right below. (In the figure, 𝑁 = 8 × 8 = 64, but
again in reality, 𝑁 is very large.) Each cell has a volume 𝑎3, which is even smaller than 𝑑𝑉 , and
𝑎 is the typical size of the molecule. Now we assume that each fluid molecule has to fit inside one
of the lattice cells and cannot be on the fence. Furthermore, each lattice cell cannot contain more
than one fluid molecule due to hard-core repulsion.
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[2]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-coarsening/
↪master/figures/coarse-graining.png')
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We can then compute the free energy of this volume element. The free energy is given by:

𝐹 = 𝑈 − 𝑇 𝑆, where 𝑈 is the potential energy and 𝑆 is the entropy. (7)

First let us calculate 𝑈 . Let us denote the interaction energy between two neighbouring molecules
to be −𝜀, where 𝜀 > 0. The interaction energy is negative because the molecules tend to attract
each other. Now let us denote 𝑧 to be the number of nearest neighbour cells. In two-dimension,
𝑧 = 4, as shown by the red lines in the figure on the right below. Thus each fluid molecule has, on
average, 𝑧 𝑁𝑝

𝑁 other neighbouring molecules. The interaction energy between the fluid molecules is
then:

𝑈 = −𝜀𝑧
2 𝑁𝑝

𝑁𝑝
𝑁 ⇒ 𝑈

𝑁 = −𝜀𝑧
2

𝑁𝑝
𝑁

𝑁𝑝
𝑁 . (8)

Note that we have added a factor of 1/2 to avoid double counting the bonds between two neigh-
bouring molecules. Now to calculate the entropy, we use the Boltzmann formula:

𝑆 = 𝑘𝐵 ln Ω, where Ω is the number of microstates. (9)

In our case Ω is the number of arranging 𝑁𝑝 indistinguishable particles into 𝑁 cells:

Ω = 𝐶𝑁
𝑁𝑝

= 𝑁!
(𝑁 − 𝑁𝑝)!𝑁𝑝! . (10)

Thus the entropy is:
𝑆 = 𝑘𝐵 [ln 𝑁! − ln(𝑁 − 𝑁𝑝)! − ln 𝑁𝑝!] . (11)

Next we can use the Stirling’s approximation ln 𝑁! ≃ 𝑁 ln 𝑁 − 𝑁 to get:

𝑆
𝑁 = −𝑘𝐵 [(1 − 𝑁𝑝

𝑁 ) ln (1 − 𝑁𝑝
𝑁 ) + 𝑁𝑝

𝑁 ln (𝑁𝑝
𝑁 )] (12)
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Thus the free energy (per unit cell) of this volume element is:

𝐹
𝑁 = 𝑈

𝑁 − 𝑇 𝑆
𝑁 (13)

= −𝜀𝑧
2

𝑁𝑝
𝑁

𝑁𝑝
𝑁 + 𝑘𝐵𝑇 [(1 − 𝑁𝑝

𝑁 ) ln (1 − 𝑁𝑝
𝑁 ) + 𝑁𝑝

𝑁 ln (𝑁𝑝
𝑁 )] . (14)

Note that the free energy per unit cell above is an intensive quantity, as expected. From the picture
below, obviously if 𝑁𝑝 = 𝑁 we get a pure liquid phase and if 𝑁𝑝 = 0 we get a pure gas phase.
Thus at critical point, we expect 𝑁𝑝 = 𝑁/2. This motivates us to expand 𝐹/𝑁 around the critical
point by writing:

𝑁𝑝
𝑁 = 1

2 + 𝜙, (15)

where 𝜙 is small. The free energy per unit cell is then:

𝐹
𝑁 = −𝜀𝑧

2 (1
2 + 𝜙) (1

2 + 𝜙) + 𝑘𝐵𝑇 [(1
2 − 𝜙) ln (1

2 − 𝜙) + (1
2 + 𝜙) ln (1

2 + 𝜙)] (16)

Next we expand the logarithm as power series up to order 𝜙4:

ln (1
2 ± 𝜙) = − ln 2 ± 2𝜙 − 2𝜙2 ± 8

3𝜙3 − 4𝜙4 … . (17)

We can then expand 𝐹/𝑁 up to order 𝜙4:

𝐹
𝑁 = −𝑧𝜀

2 𝜙 + (2𝑘𝐵𝑇 − 𝑧𝜀
2 ) 𝜙2 + 4𝑘𝐵𝑇

3 𝜙4 + 𝒪(𝜙6). (18)

Note that we have ignored the constant terms in the equation above. Furthermore, we can also
ignore the linear term ∝ 𝜙 as this does not affect the ̇𝜙-dynamics as we shall see below. To find
the free energy density, we can then divide 𝐹/𝑁 by the volume of the lattice cell 𝑎3 to get:

𝑔(𝜙) = 𝐹
𝑁𝑎3 = (2𝑘𝐵𝑇

𝑎3 − 𝑧𝜀
2𝑎3 )⏟⏟⏟⏟⏟⏟⏟

𝛼

𝜙2 + 4𝑘𝐵𝑇
3𝑎3⏟

𝛽

𝜙4 + 𝒪(𝜙6). (19)

If we compare with the Landau-Ginzburg free energy density 𝑔(𝜙, ∇𝜙), we identify the coefficients
of 𝜙2 and 𝜙4 to be:

𝛼 = 2𝑘𝐵𝑇
𝑎3 − 𝑧𝜀

2𝑎3 and 𝛽 = 4𝑘𝐵𝑇
3𝑎3 , (20)

respectively. Note that 𝛽 is always positive, whereas 𝛼 becomes negative when:

𝑇 < 𝑧𝜀
4𝑘𝐵

= 𝑇𝑐. (21)

We call the right hand side the critical temperature 𝑇𝑐, below which, phase separation can occur
(for a given range of 𝜙0). If 𝑇 > 𝑇𝑐, the coefficient of 𝜙2 in the free energy is always positive, and the
system remains homogenously mixed, and there is no phase separation into liquid or gas. Finally,
we should also note that we did not the get the gradient term ∼ |∇𝜙|2 through coarse-graining.
This term has to be added phenomenologically with some unknown coefficient 𝜅 > 0.
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1.2 Coarse-grained free energy
The total coarse-grained free energy of the system can then be written as:

ℱ[𝜙] = ∫
𝑉

𝑑𝑉 [ 𝛼
2 𝜙2 + 𝛽

4 𝜙4
⏟⏟⏟⏟⏟

𝑓(𝜙)

+𝜅
2 |∇𝜙|2], (22)

where 𝑓(𝜙) is the local free energy density term and 𝜅
2 |∇𝜙|2 is a semi-local free energy density term.

𝛽 and 𝜅 are positive constants. 𝛼 can be positive or negative. If 𝛼 < 0, then the system will favour
phase separation into the liquid 𝜙 ≃ √−𝛼

𝛽 and vapour phase 𝜙 ≃ −√−𝛼
𝛽 . On the other hand if

𝛼 > 0, the system will remain in a homogenous phase with 𝜙 = 𝜙0 everywhere. The reason for this
has something to do with the shape of the local (or bulk) free energy density 𝑓(𝜙), as you can see
below. For 𝛼 < 0, the local (or bulk) free energy density 𝑓(𝜙) has two minima at 𝜙 = ±√−𝛼

𝛽 .

[8]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-coarsening/
↪master/figures/Landau-energy.png')

[8]:

The global equilibrium state is given by the minimum of the total free energy ℱ[𝜙], i.e,

𝛿ℱ
𝛿𝜙 = 0, (23)

subject to the constraint
𝜙0 = 1

𝑉 ∫
𝑉

𝑑𝑉 𝜙(r, 𝑡) = constant. (24)
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There are two equilibrium states: 1. Homogenous state, where the density is constant everywhere
𝜙(r, 𝑡) = 𝜙0 = constant. 2. Droplet state, where the system is separated into two domains with
density 𝜙 ≃ +√−𝛼

𝛽 and 𝜙 ≃ −√−𝛼
𝛽 in each domain.

The control parameters in our system are 𝛼 and 𝜙0. Depending on the values of 𝛼 and 𝜙0, the
equilibrium state of the system can either be the homogenous state or the droplet state.

[9]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-coarsening/
↪master/figures/equilibrium-phase-diagram.png')
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1.3 Functional derivative
Let us consider some functional ℱ[𝜙(r)], which in general, can be written as:

ℱ[𝜙] = ∫
𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 . (25)

In the above equation, 𝑔(𝜙, 𝜕𝛼𝜙) is some function of 𝜙 and its derivative 𝜕𝛼𝜙. Here the index
𝛼 = 𝑥, 𝑦, 𝑧 represents the Cartesian coordinates. We also use the following notation for partial
derivatives 𝜕𝑥 = 𝜕

𝜕𝑥 , 𝜕𝑦 = 𝜕
𝜕𝑦 , and 𝜕𝑧 = 𝜕

𝜕𝑧 . In the case of our energy, 𝑔 is given by:

𝑔(𝜙, 𝜕𝛼𝜙) = 𝛼
2 𝜙2 + 𝛽

4 𝜙4 + 𝜅
2 (𝜕𝛼𝜙)(𝜕𝛼𝜙). (26)

Here, we have used the repeated index notation, i.e summation over that index is implied so the
last term in the above equation is implied to be:

(𝜕𝛼𝜙)(𝜕𝛼𝜙) = (𝜕𝑥𝜙)2 + (𝜕𝑦𝜙)2 + (𝜕𝑧𝜙)2 = |∇𝜙|2 (27)
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Now let us consider some density field 𝜙(r). Let’s suppose that we add some perturbation to the
density field such that 𝜙(r) → 𝜙(r) + 𝛿𝜙(r), where 𝛿𝜙 is a small perturbation. And we also suppose
that 𝛿𝜙 vanishes at the boundary (i.e. the surface of the box). We want to calculate the change in
the total energy due to this perturbation:

𝛿ℱ = ℱ[𝜙 + 𝛿𝜙] − ℱ[𝜙] (28)

= ∫
𝑉

𝑔(𝜙 + 𝛿𝜙, 𝜕𝛼𝜙 + 𝜕𝛼𝛿𝜙) 𝑑𝑉 − ∫
𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 (29)

Next we take Taylor series for the first term to get:

𝛿ℱ = ∫
𝑉

𝑔(𝜙 + 𝛿𝜙, 𝜕𝛼𝜙 + 𝜕𝛼𝛿𝜙) 𝑑𝑉 − ∫
𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 (30)

= ∫
𝑉

{𝑔(𝜙, 𝜕𝛼𝜙) + 𝜕𝑔
𝜕𝜙𝛿𝜙 + 𝜕𝑔

𝜕(𝜕𝛼𝜙)𝜕𝛼(𝛿𝜙)} 𝑑𝑉 − ∫
𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 (31)

= ∫
𝑉

{ 𝜕𝑔
𝜕𝜙𝛿𝜙 + 𝜕𝑔

𝜕(𝜕𝛼𝜙)𝜕𝛼(𝛿𝜙)} 𝑑𝑉 (32)

Using product rule (or integration by parts), we can write:

𝜕𝑔
𝜕(𝜕𝛼𝜙)𝜕𝛼(𝛿𝜙) = 𝜕𝛼 ( 𝜕𝑔

𝜕(𝜕𝛼𝜙)𝛿𝜙) − 𝜕𝛼 ( 𝜕𝑔
𝜕(𝜕𝛼𝜙)) 𝛿𝜙 (33)

Thus, 𝛿ℱ becomes:

𝛿ℱ = ∫
𝑉

{ 𝜕𝑔
𝜕𝜙𝛿𝜙} 𝑑𝑉 + ∫

𝑉
𝜕𝛼 ( 𝜕𝑔

𝜕(𝜕𝛼𝜙)𝛿𝜙) 𝑑𝑉 − ∫
𝑉

{𝜕𝛼 ( 𝜕𝑔
𝜕(𝜕𝛼𝜙)) 𝛿𝜙} 𝑑𝑉 (34)

For the second term, we can use divergence theorem:

∫
𝑉

𝜕𝛼𝐽𝛼 𝑑𝑉 = ∮
𝑆

𝐽𝛼 𝑑𝑆𝛼, (35)

where 𝑆 is the surface bounding the volume 𝑉 . So we end up with:

𝛿ℱ = ∫
𝑉

{ 𝜕𝑔
𝜕𝜙𝛿𝜙} 𝑑𝑉 + ∮

𝑆
( 𝜕𝑔

𝜕(𝜕𝛼𝜙)𝛿𝜙) 𝑑𝑆𝛼⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

− ∫
𝑉

{𝜕𝛼 ( 𝜕𝑔
𝜕(𝜕𝛼𝜙)) 𝛿𝜙} 𝑑𝑉 (36)

= ∫
𝑉

{ 𝜕𝑔
𝜕𝜙 − 𝜕𝛼 ( 𝜕𝑔

𝜕(𝜕𝛼𝜙))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛿ℱ/𝛿𝜙(r)

}𝛿𝜙 𝑑𝑉 (37)

The surface integral above vanishes since 𝛿𝜙 vanishes at the boundary. The functional derivative
of ℱ with respect to 𝜙(r) is defined to be the terms inside the curly brackets:

𝛿ℱ
𝛿𝜙(r) = 𝜕𝑔

𝜕𝜙 − 𝜕𝛼 ( 𝜕𝑔
𝜕(𝜕𝛼𝜙)) . (38)

The functional derivative is like a generalization of the regular derivative. When the total energy
is minimum (or maximum), the functional derivative of that energy must be equal to zero:

𝛿ℱ
𝛿𝜙 = 0. (39)
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1.4 Dynamics
The chemical potential 𝜇(r, 𝑡) is defined to be the energy cost of adding a particle locally at r.
Mathematically, it can be written as:

𝜇 = 𝛿ℱ
𝛿𝜙 . (40)

Using the formula for functional derivative above, we can calculate:

𝜇 = 𝜕𝑔
𝜕𝜙 − 𝜕𝛼 ( 𝜕𝑔

𝜕(𝜕𝛼𝜙)) = 𝛼𝜙 + 𝛽𝜙3 − 𝜅 𝜕𝛼𝜕𝛼𝜙⏟
∇2𝜙

(41)

Note that:
𝜕𝛼𝜕𝛼 = 𝜕2

𝑥 + 𝜕2
𝑦 + 𝜕2

𝑧 = ∇2 (42)

Since the total amount of fluid in the system is conserved, the dynamics of 𝜙(r, 𝑡) must follow the
continuity equation:

𝜕𝜙
𝜕𝑡 + ∇ ⋅ J = 0, (43)

where J is the current. To see this, we can integrate the continuity equation over the whole box to
get:

𝑑
𝑑𝑡 ∫

𝑉
𝜙 𝑑𝑉 + ∫

𝑉
∇ ⋅ J 𝑑𝑉 = 0 (44)

𝑑
𝑑𝑡 ∫

𝑉
𝜙 𝑑𝑉 + ∮

𝑆
J ⋅ n̂ 𝑑𝑆

⏟⏟⏟⏟⏟
=0

= 0, (45)

where we have used the divergence theorem on the second term. 𝑆 is the surface covering the
boundary of the box. Now since we have periodic boundary condition on each side of the box, the
second term in the equation above vanishes so we end up with:

𝑑
𝑑𝑡 ∫

𝑉
𝜙 𝑑𝑉 = 0 ⇒ ∫

𝑉
𝜙 𝑑𝑉 = constant, (46)

which implies the total amount of fluid is conserved.

Finally, the current is given by:
J = −𝑀∇𝜇, (47)

i.e., particles diffuse from regions with high chemical potential to regions with low chemical poten-
tial. 𝑀 > 0 is called the mobility. Thus the dynamics can also be written as:

𝜕𝜙
𝜕𝑡 = 𝑀∇2𝜇. (48)

Now let us consider the rate of change of the total free energy ℱ:

𝑑ℱ
𝑑𝑡 = 𝑑

𝑑𝑡 ∫
𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 = ∫
𝑉

𝜕
𝜕𝑡𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 . (49)
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Next using chain rule, we get:

𝑑ℱ
𝑑𝑡 = ∫

𝑉
{ 𝜕𝑔

𝜕𝜙
𝜕𝜙
𝜕𝑡 + 𝜕𝑔

𝜕(𝜕𝛼𝜙)𝜕𝛼 (𝜕𝜙
𝜕𝑡 )} 𝑑𝑉 (50)

= ∫
𝑉

{ 𝜕𝑔
𝜕𝜙 − 𝜕𝛼 ( 𝜕𝑔

𝜕(𝜕𝛼𝜙))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝜇

} 𝜕𝜙
𝜕𝑡⏟

=𝑀∇2𝜇

𝑑𝑉 , (51)

where we have used integration by parts again and the surface integral term vanishes (similar to
previous section). Finally, we substitute the dynamics to get:

𝑑ℱ
𝑑𝑡 = 𝑀 ∫

𝑉
𝜇∇2𝜇 𝑑𝑉 = −𝑀 ∫

𝑉
∇𝜇 ⋅ ∇𝜇 𝑑𝑉 ≤ 0, (52)

where we have used the integration by parts again. Thus we have shown that 𝑑ℱ
𝑑𝑡 is always negative

as long as the dynamics follows ̇𝜙 = ∇2𝜇 and 𝑀 ≥ 0. In other words the dynamics ̇𝜙 = ∇2𝜇 will
guarantee that the total energy always decreases with time until the minimum (equilibrium state)
is reached.

1.5 Linear stability of the homogenous state
The dynamics for 𝜙(r, 𝑡) can be now written as:

𝜕𝜙
𝜕𝑡 = 𝑀∇2 [𝛼𝜙 + 𝛽𝜙3 − 𝜅∇2𝜙] (53)

Suppose we write the density field as follows:

𝜙(r, 𝑡) = 𝜙0 + 𝛿𝜙(r, 𝑡), (54)

where 𝛿𝜙(r, 𝑡) is a small fluctuation around the homogenous state 𝜙 = 𝜙0. We are interested in
whether the fluctuations will grow or decay as the time 𝑡 increases. To do this, we substitute
𝜙 = 𝜙0 + 𝛿𝜙 into the dynamics to get:

𝜕𝛿𝜙
𝜕𝑡 = 𝑀∇2 [(𝛼 + 3𝛽𝜙2

0)𝛿𝜙 − 𝜅∇2𝛿𝜙] . (55)

Note that we have neglected small terms of order ∼ 𝛿𝜙2 and higher. Now we write 𝛿𝜙(r, 𝑡) as a
Fourier series:

𝛿𝜙(r, 𝑡) = ∑
q

𝛿 ̃𝜙q(𝑡)𝑒𝑖q⋅r. (56)

q = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧)𝑇 is the wavevector and each component of q is discrete:

𝑞𝑥 = 0, ± 2𝜋
𝐿𝑥

, ± 4𝜋
𝐿𝑥

, … (57)

𝑞𝑦 = 0, ±2𝜋
𝐿𝑦

, ±4𝜋
𝐿𝑦

, … (58)

𝑞𝑧 = 0, ±2𝜋
𝐿𝑧

, ±4𝜋
𝐿𝑧

, … (59)

(60)
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The summation in the Fourier series indicates summing over all discrete values of q’s. The Fourier
series can be thought as decomposing a function 𝜙(𝑥), which is defined on 𝑥 ∈ [0, 𝐿], into standing
waves 1, 𝑒±𝑖 2𝜋

𝐿 𝑥, 𝑒±𝑖 4𝜋
𝐿 𝑥, …, with ̃𝜙𝑞 as the amplitude for each standing wave. Substituting the

Fourier series into the dynamics, a set of first order ODE:

𝑑𝛿 ̃𝜙q
𝑑𝑡 = −𝑀 [(𝛼 + 3𝛽𝜙2

0)𝑞2 + 𝜅𝑞4] 𝛿 ̃𝜙q, for each q. (61)

The solution is:
𝛿 ̃𝜙q(𝑡) = 𝐴q𝑒𝑟(𝑞)𝑡, (62)

where
𝑟(𝑞) = 𝑀[(−𝛼 − 3𝛽𝜙2

0)𝑞2 − 𝜅𝑞4] (63)

is the growth rate constant (here 𝑞 = |q|). If 𝑟(𝑞) > 0 then the fluctuation 𝛿 ̃𝜙q will grow exponen-
tially. If 𝑟(𝑞) < 0 then the fluctuation 𝛿 ̃𝜙q will decay exponentially to zero. Now let’s consider case
by case.

Case I: 𝛼 > 0 In this case, the coefficients of 𝑞2 and 𝑞4 in 𝑟(𝑞) are always negative.

𝑟(𝑞) = 𝑀[(−𝛼 − 3𝛽𝜙2
0)⏟⏟⏟⏟⏟

<0
𝑞2 − 𝜅⏟

<0
𝑞4]. (64)

Therefore the growth rate is always negative So the fluctuations decay to zero exponentially for all
wavevector q.

Case IIa: 𝛼 < 0 and −√−𝛼
3𝛽 < 𝜙0 < √−𝛼

3𝛽 In this case, the coefficient of 𝑞2 is positive whereas
the coefficient of 𝑞4 is negative.

𝑟(𝑞) = 𝑀[(−𝛼 − 3𝛽𝜙2
0)⏟⏟⏟⏟⏟

>0
𝑞2 − 𝜅⏟

<0
𝑞4]. (65)

We can plot the growth rate 𝑟(𝑞) as a function of 𝑞 = |q|. The growth rate is positive for some
range of 𝑞. This indicates the fluctuations will grow exponentially with time for some values of
q. We can also define a characteristic wavevector 𝑞∗ such that the growth rate is maximum. This
correponds to the initial growth lengthscale 𝜆∗ = 2𝜋

𝑞∗ . This instability is illustrated in the numerical
simulation at the bottom of this notebook.

Case IIb: 𝛼 < 0 and |𝜙0| > √−𝛼
3𝛽 In this case, both coefficients of 𝑞2 and 𝑞4 are negative in

the growth rate. Thus all fluctuations decay to zero for all q, similar to case I. However from
the previous section, we also learnt that if √−𝛼

3𝛽 < 𝜙0 < √−𝛼
𝛽 or −√−𝛼

𝛽 < 𝜙0 < −√−𝛼
3𝛽 , the

actual equilibrium state (or lowest energy state) of the system is actually a droplet state. However,
if we initialize the system from a homogenous state 𝜙(r, 𝑡 = 0) = 𝜙0 + small noise, the system
will actually remain in the homogenous state, even though the homogenous state is not the lowest
energy state. We call the homogenous state to be a metastable state in this regime. In order for the
system to jump into the actual equilibrium state, we need to add a rather large perturbation in the
initial condition. For instance we may introduce a nucleus (i.e. a tiny droplet) into the system at
the initial time. If the size of the nucleus is larger than the critical size, the nucleus will then grow
until the equilibrium state of a macroscopic droplet is reached. This process is called nucleation
process, which is quite distinct from Case IIa.
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[11]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-coarsening/
↪master/figures/stability-phase-diagram.png')

[11]:

1.6 Numerical simulation
Let us consider a two-dimensional system. In computer simulation the space r is discretized into
lattice with step size Δ𝑥 along the 𝑥-axis and Δ𝑦 along the 𝑦-axis. (Ideally Δ𝑥 and Δ𝑦 have to be
small.) The coordinates 𝑥 and 𝑦 then become:

𝑥 → 𝑖Δ𝑥, where 𝑖 = 0, 1, 2, … , 𝑁𝑥 − 1 (66)
𝑦 → 𝑗Δ𝑦, where 𝑗 = 0, 1, 2, … , 𝑁𝑦 − 1. (67)

𝑁𝑥 ∈ ℕ and 𝑁𝑦 ∈ ℕ are the number of lattice points along 𝑥 and along 𝑦 respectively. The system
size is now 𝐿𝑥 × 𝐿𝑦, where 𝐿𝑥 = 𝑁𝑥Δ𝑥 and 𝐿𝑦 = 𝑁𝑦Δ𝑦. Similarly the time 𝑡 is also discretized
into:

𝑡 → 𝑛Δ𝑡, where 𝑛 = 0, 1, 2, … , 𝑁𝑡 − 1 (68)

where 𝑁𝑡Δ𝑡 is total length of time that we run the simulation for. The density field then becomes:

𝜙(r, 𝑡) → 𝜙𝑛
𝑖𝑗. (69)

Now we want to solve:

𝜕𝜙
𝜕𝑡 = 𝑀∇2𝜇, where 𝜇 = 𝛼𝜙 + 𝛽𝜙3 − 𝜅∇2𝜙. (70)
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First we can write the time derivative as:

𝜕𝜙
𝜕𝑡 ≃

𝜙𝑛+1
𝑖𝑗 − 𝜙𝑛

𝑖𝑗
Δ𝑡 + 𝒪(Δ𝑡) (71)

So the dynamics becomes:
𝜙𝑛+1

𝑖𝑗 = 𝜙𝑛
𝑖𝑗 + Δ𝑡𝑀∇2𝜇𝑛

𝑖𝑗. (72)

So for a given initial condition 𝜙0
𝑖𝑗 we can find 𝜙 for subsequent timesteps: 𝜙1

𝑖𝑗, 𝜙2
𝑖𝑗, …. Next we

need to calculate the spatial derivatives of 𝜙 and 𝜇 in the lattice, i.e.:

𝜕𝜙
𝜕𝑥 ≃ 𝜙𝑖+1,𝑗 − 𝜙𝑖−1,𝑗

2Δ𝑥 + 𝒪(Δ𝑥2) (73)

𝜕𝜙
𝜕𝑦 ≃ 𝜙𝑖,𝑗+1 − 𝜙𝑖,𝑗−1

2Δ𝑦 + 𝒪(Δ𝑦2) (74)

𝜕2𝜙
𝜕𝑥2 ≃ 𝜙𝑖+1,𝑗 − 2𝜙𝑖𝑗 + 𝜙𝑖−1,𝑗

Δ𝑥2 + 𝒪(Δ𝑥) (75)

𝜕2𝜙
𝜕𝑦2 ≃ 𝜙𝑖,𝑗+1 − 2𝜙𝑖𝑗 + 𝜙𝑖,𝑗−1

Δ𝑦2 + 𝒪(Δ𝑦) (76)

(77)

The Laplacian is then given by:

∇2𝜙 = 𝜕2𝜙
𝜕𝑥2 + 𝜕2𝜙

𝜕𝑦2 = 𝜙𝑖+1,𝑗 − 2𝜙𝑖𝑗 + 𝜙𝑖−1,𝑗
Δ𝑥2 + 𝜙𝑖,𝑗+1 − 2𝜙𝑖𝑗 + 𝜙𝑖,𝑗−1

Δ𝑦2 + 𝒪(Δ𝑥) + 𝒪(Δ𝑦). (78)

In Python 𝜙𝑖𝑗 is represented as an array:

𝜙 =
⎛⎜⎜⎜⎜⎜
⎝

𝜙00 𝜙01 … 𝜙0,𝑁𝑦−1
𝜙10 𝜙11 𝜙1,𝑁𝑦−1

⋮ ⋱ ⋮
𝜙𝑁𝑥−1,0 𝜙𝑁𝑥−1,1 … 𝜙𝑁𝑥−1,𝑁𝑦−1

⎞⎟⎟⎟⎟⎟
⎠

↓ 𝑖-direction (79)

⟶ 𝑗-direction (80)

Note that the 𝑥- and 𝑦-axis (or 𝑖- and 𝑗-direction) are transposed. The array 𝜙𝑖+1,𝑗 is then equivalent
to shifting every elements inside the array 𝜙𝑖𝑗 upwards. This is represented by the np.roll function
in Python:

phi_i_plus_1 = np.roll(phi, -1, axis=0)

[11]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation

# lattice parameters
dx = 1.0
Nx, Ny = 64, 64
dt = 0.01
Nt = 1000000
T = int(Nt*dt) # total length of time
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# free energy parameters
M, alpha, beta, kappa = 1.0, -1.0, 1.0, 1.0
phi0 = 0.0

# array of cartesian coordinates (needed for plotting)
x = np.arange(0, Nx)*dx
y = np.arange(0, Ny)*dx
y, x = np.meshgrid(y, x)

# create a phi-matrix of size Nx by Ny (similarly for mu-matrix)
phi = np.zeros((Nx, Ny)) # phi at instantaneous time
phi_t = np.zeros((Nx, Ny, T)) # phi as a function of time t
mu = np.zeros((Nx, Ny))

[12]: # method to calculate the laplacian
def laplacian(phi):

# axis=0 --> roll along x-direction
# axis=1 --> roll along y-direction
laplacianphi = (np.roll(phi,+1,axis=0) - 2.0*phi + np.roll(phi,-1,axis=0))/

↪(dx*dx) \
+ (np.roll(phi,+1,axis=1) - 2.0*phi + np.roll(phi,-1,axis=1))/

↪(dx*dx)

return laplacianphi

# create animation
def animate(phi_t):

# initialize figure and movie objects
fig, ax = plt.subplots(figsize=(4,4))

# set label
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# set x range and y range
ax.set_xlim([0, Nx*dx])
ax.set_ylim([0, Ny*dx])

# set tick interval
ax.tick_params(axis='both')
ax.set_xticks(np.arange(0, Nx, 10)*dx)
ax.set_yticks(np.arange(0, Ny, 10)*dx)

# set aspect ratio
ax.set_aspect('equal')
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# create colormap of phi
colormap = ax.pcolormesh(x, y, phi_t[:,:,0], shading='auto', vmin=-1.2,␣

↪vmax=1.2)
plt.colorbar(colormap)

def animate(t):
# set title
ax.set_title(f't = {t}')
colormap.set_array(phi_t[:,:,t].flatten()) # update data

# interval = time between frames in miliseconds
ani = animation.FuncAnimation(fig, animate, interval=10,␣

↪frames=range(0,T,10))
ani.save("movie.mp4")

# plot phi at 4 different times
def plot(phi_t, t1, t2, t3, t4):

# initialize figure and movie objects
fig, (ax1, ax2, ax3, ax4) = plt.subplots(1,4,figsize=(8,2))

ax1.set_title(f't = {t1}')
ax1.set_aspect('equal')
colormap = ax1.pcolormesh(x, y, phi_t[:,:,t1], \

shading='auto', vmin=-1.2, vmax=1.2)

ax2.set_title(f't = {t2}')
ax2.set_aspect('equal')
colormap = ax2.pcolormesh(x, y, phi_t[:,:,t2], \

shading='auto', vmin=-1.2, vmax=1.2)

ax3.set_title(f't = {t3}')
ax3.set_aspect('equal')
colormap = ax3.pcolormesh(x, y, phi_t[:,:,t3], \

shading='auto', vmin=-1.2, vmax=1.2)

ax4.set_title(f't = {t4}')
ax4.set_aspect('equal')
colormap = ax4.pcolormesh(x, y, phi_t[:,:,t4], \

shading='auto', vmin=-1.2, vmax=1.2)

plt.show()

# update phi
def update(phi):

# calculate mu
mu = alpha*phi + beta*phi*phi*phi - kappa*laplacian(phi)
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# update phi
phi = phi + dt*M*laplacian(mu)

return phi

# method to run the simulation from a uniform phi + a little bit of noise
def run():

# initialize the system with uniform state + a little bit of noise
phi = np.ones((Nx, Ny))*phi0 + np.random.normal(0.0, 0.001, (Nx, Ny))

# update the \phi_{ij}^n for all n
for n in range(0, Nt, 1):

# save current phi
if (n % int(1/dt) == 0):

phi_t[:,:,int(n*dt)] = phi

phi = update(phi)

[7]: # run simulation for phi0 = -0.2
phi0 = -0.2
run()
#animate(phi_t)
plot(phi_t, 10, 100, 1000, 9990)
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[13]: # run simulation for phi0 = 0.2
phi0 = 0.2
run()
#animate(phi_t)
plot(phi_t, 10, 100, 1000, 9990)
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[9]: # run simulation for phi0 = 0.0
phi0 = 0.0
run()
#animate(phi_t)
plot(phi_t, 10, 100, 1000, 9990)
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