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1 Droplets
1.1 Different morphologies of the droplet state

Let us consider the equilibrium droplet state, i.e., 𝛼 < 0 and −√−𝛼
𝛽 < 𝜙0 < √−𝛼

𝛽 , at 𝑡 → ∞.
For a fixed value of 𝛼, depending on the global average density 𝜙0, we can have 3 different types
of droplet state. For 𝜙0 < 0, we have a liquid droplet surrounded by vapour phase. For 𝜙0 > 0,
we have a vapour bubble surrounded by liquid phase. Finally for 𝜙0 = 0, the liquid droplet forms
a strip, as we can see from the figure below. Note that periodic boundary condition is assumed in
both 𝑥 and 𝑦-direction.
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1.2 Flat interface (𝑑 = 1 dimension)
Let us consider the strip geometry (𝜙0 = 0). As we can see from the middle picture above, the
interface between the liquid and the gas phase is completely flat, reducing the problem to a one-
dimensional problem 𝜙(𝑥, 𝑡). In the steady (or equilibrium) state 𝑡 → ∞, the density profile might
look something like in the plot below:
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The plot above shows the typical steady state density field 𝜙(𝑥) in an infinite one-dimensional
system. At 𝑥 = −∞, we have the gas phase, where 𝜙 = −√−𝛼

𝛽 and at 𝑥 = +∞, we have the

liquid phase, where 𝜙 = √−𝛼
𝛽 . We then have an interface, assumed to be located at the origin

𝑥 = 0, which separates the liquid from the gas phase. As we can see, the interface is not sharp, but
rather is spread across some interfacial width 𝜉. In real physical situations, the interfacial width
is typically a few molecular lengths (∼ nm), however in simulations, we usually use a much wider
interfacial width for numerical stability. This is fine as long as the lengthscales of the problem we
are interested in are much larger than 𝜉.

1.2.1 Interfacial profile 𝜙(𝑥) and interfacial width 𝜉
In this subsection, we will derive the interfacial profile 𝜙(𝑥) and the interfacial width 𝜉 for a flat
interface, which is effectively a one-dimensional (1d) system.

In 1d, the coarse-grained free energy can be written as:

ℱ[𝜙] = 𝐴 ∫
∞

−∞
𝑑𝑥 {𝛼

2 𝜙2 + 𝛽
4 𝜙4 + 𝜅

2 |∇𝜙|2}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1d energy density

, (1)

where 𝐴 is the area of the system along 𝑦 and 𝑧 direction. (In 1d, the system is translationally
invariant along 𝑦 and 𝑧.) The 1d energy density consists of the local term: 𝛼

2 𝜙2 + 𝛽
4 𝜙4 = 𝑓(𝜙),

which we will call 𝑓(𝜙), and the semi-local term 𝜅
2 |∇𝜙|2.

The steady state density, is given by the solution to the equation:

𝜇(𝑥) = 𝛿ℱ
𝛿𝜙 = 0 ⇒ 𝑑𝑓

𝑑𝜙 − 𝜅𝑑2𝜙
𝑑𝑥2 = 0, (2)
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where 𝑓(𝜙) = 𝛼
2 𝜙2 + 𝛽

4 𝜙4 is the local energy density. To solve the above equation, we multiply both
sides of the equation by 𝑑𝜙/𝑑𝑥 to get:

𝑑𝑓
𝑑𝑥 − 𝜅𝑑2𝜙

𝑑𝑥2
𝑑𝜙
𝑑𝑥 = 0 ⇒ 𝑑𝑓

𝑑𝑥 − 𝜅
2

𝑑
𝑑𝑥 (𝑑𝜙

𝑑𝑥)
2

= 0 (3)

Now we can integrate with respect to 𝑥 to get the Noether equation:

𝑓(𝜙) − 𝜅
2 (𝑑𝜙

𝑑𝑥)
2

= 𝐶, (4)

where 𝐶 is the constant of integration. The above equation can also be derived from Noether’s
theorem and the constant 𝐶 is a Noether current. The constant of integration can be found by
substituting 𝑥 = ∞ to get 𝐶 = 𝑓 (√𝛼

𝛽 ) = −𝛼2
4𝛽 . After rearranging, we get:

𝑑𝜙
√𝑓(𝜙) + 𝛼2

4𝛽
= √ 2

𝜅𝑑𝑥, (5)

which we can integrate from 𝑥 = 0 to 𝑥.

∫
𝜙(𝑥)

0

𝑑𝜙
√𝑓(𝜙) + 𝛼2

4𝛽
= √ 2

𝜅𝑥 (6)

Note that we can factorize:

𝛼
2 𝜙2 + 𝛽

2 𝜙4
⏟⏟⏟⏟⏟

𝑓(𝜙)

+𝛼2

4𝛽 = 1
4𝛽 (𝛼 + 𝛽𝜙2)2 , (7)

so that the integral becomes:

∫
𝜙(𝑥)

0

𝑑𝜙
𝛼 + 𝛽𝜙2 = √ 1

2𝜅𝛽 𝑥 ⇒ 1
𝛼 ∫

𝜙(𝑥)

0

𝑑𝜙
1 − 𝛽

−𝛼𝜙2 = √ 1
2𝜅𝛽 𝑥 (8)

Note that 𝛼 < 0. Using 𝑑
𝑑𝑥 tanh−1(𝑥) = 1

1−𝑥2 , we can then solve this integral to get:

𝜙(𝑥) = √−𝛼
𝛽 tanh (𝑥

𝜉 ) , where 𝜉 = √ 2𝜅
−𝛼 (9)

is the interfacial width.

1.2.2 Surface tension 𝛾
In this subsection, we will introduce the concept of surface tension 𝛾 and derive its expression for
a flat interface. First, let us consider the local free energy density 𝑓(𝜙) + 𝜅

2 (𝑑𝜙
𝑑𝑥 )2

, which consists
of the local and semi-local terms.
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The plot above shows the free energy density 𝑓(𝜙(𝑥)) + 𝜅
2 (𝑑𝜙

𝑑𝑥 )2
as a function of 𝑥 for the density

profile 𝜙(𝑥), shown in the previous plot. In the bulk, the energy density is mostly flat and negative,
which is equal to 𝑓 (√−𝛼

𝛽 ) = −𝛼2
4𝛽 . Across the interface, the energy density goes up and then

goes down, back to its bulk value. The interfacial energy is defined to be excess free energy across
this interface, i.e., the shaded region in the plot above. More specifically, the interfacial energy is
defined to be:

ℱinterface = 𝐴 ∫
∞

−∞
{𝑓(𝜙(𝑥)) + 𝜅

2 (𝑑𝜙
𝑑𝑥)

2
+ 𝛼2

4𝛽 } 𝑑𝑥. (10)

Now we can refer to the Noether equation which we derived above, i.e.:

𝑓(𝜙) − 𝜅
2 (𝑑𝜙

𝑑𝑥)
2

= 𝐶 = −𝛼2

4𝛽 (11)

Substituting this to ℱinterface, the interfacial energy becomes:

ℱinterface = 𝐴𝜅 ∫
∞

−∞
(𝑑𝜙

𝑑𝑥)
2

𝑑𝑥. (12)

Finally the surface tension 𝛾 is defined to be the interfacial energy per interfacial area. Thus we
get:

𝛾 = 𝜅 ∫
∞

−∞
(𝑑𝜙

𝑑𝑥)
2

𝑑𝑥 = 𝜅 ∫
√−𝛼/𝛽

−√−𝛼/𝛽

𝑑𝜙
𝑑𝑥 𝑑𝜙 (13)

Using Noether’s equation, we can substitute 𝑑𝜙
𝑑𝑥 :

𝑑𝜙
𝑑𝑥 = √ 2

𝜅√𝑓(𝜙) − 𝑓 (√−𝛼
𝛽 ) = √ 2

𝜅√𝑓(𝜙) + 𝛼2

4𝛽 , (14)
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so the surface tension becomes:

𝛾 =
√

2𝜅 ∫
√−𝛼/𝛽

−√−𝛼/𝛽
√𝑓(𝜙) + 𝛼2

4𝛽 𝑑𝜙 (15)

Substituting 𝑓(𝜙) = 𝛼
2 𝜙2 + 𝛽

4 𝜙4, we can solve the above integral to get:

𝛾 = √−8𝜅𝛼3

9𝛽2 . (16)

Note that 𝛼 < 0.

1.3 Curved interface (𝑑 > 1 dimension)
We will now go back to 𝑑 > 1 dimensional problems. In general, the interface between the liquid
and the gas phase is not always flat but often curved.

1.3.1 Microscopic picture of surface tension

Let us consider a liquid water droplet. Inside the bulk liquid, each water molecule has 𝑧 nearest
neighbours. However, the water molecules at the liquid/gas interface only have 𝑧/2 nearest neigh-
bours. That means to create a new interface, some bonds have to be broken. The energy required
to break these bonds (per unit interfacial area) is called the surface tension 𝛾.

1.3.2 Macroscopic picture of surface tension

Let us consider a liquid droplet in three-dimension and far from the boundaries (such as solid walls).
The total free energy of the liquid droplet has two contributions:

ℱ = ℱbulk + ℱinterface. (17)

The first contribution comes from the bulk free energy ℱbulk, which is equal to the local free energy
density 𝑓(𝜙) multiplied by the volume of the droplet 𝑉 :

ℱbulk ≃ 𝑓(𝜙𝑙)𝑉 = constant. (18)

Note that we have assumed the density of the liquid inside the droplet, 𝜙𝑙, to be constant through-
out the bulk of the droplet. Consequently, the volume of the liquid droplet is also constant by
conservation of mass. Thus ℱbulk is constant. The second contribution to ℱ comes from the in-
terfacial energy ℱinterface, which is equal to the surface tension 𝛾 multiplied by the surface area of
the droplet 𝑆:

ℱinterface ≃ 𝛾𝑆. (19)

Since 𝛾 > 0, the equilibrium shape of the liquid droplet, which minimizes the total free energy ℱ,
is therefore a sphere.

The surface tension 𝛾 can also be thought as a force per unit length. To illustrate this, let us
consider a thin film of soap, as shown in the picture below. Technically, a soap film is an air-liquid-
air interface, so the surface tension would be doubled. Let us imagine that this two-dimensional
soap film is confined between three fixed rods (black colour in the picture below) and a movable
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rod which can move laterally along 𝑥 (red colour in the picture below). The energy stored inside
this soap film is then:

ℱinterface = 𝛾𝑆 = 𝛾ℓ𝑥. (20)

Therefore the force by the soap film on the red rod is equal to:

𝐹interface = −𝑑ℱinterface
𝑑𝑥 = −𝛾ℓ. (21)

𝐹interface is negative since the direction is to the left in the picture below. Thus a surface tension 𝛾
is a force (per unit length) which tends to minimize the surface area of the interface.

[192]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/work.png')
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1.3.3 Stress tensor

Consider a smooth surface 𝑆, which can be open or closed. For an open surface, we can arbitrarily
define one side of the surface to be the inner side and the other side to be the outer side. For
a closed surface, on the other hand, the inner side is always defined to be the volume which is
enclosed by the surface. At any point 𝑃 on the surface, we may then define the outward normal
unit vector n̂ to be perpendicular to 𝑆 and point in the outer direction.

Let us consider some surface element 𝑑S = 𝑑𝑆 n̂ inside some fluid, as depicted in the picture below.
The direction of 𝑑S is defined to be the outward unit normal, which in this case is assumed to point
to the right. The differential force acting on the inner fluid by the outer fluid (or by the boundary
if it is a solid wall on the other side) is then given by:

𝑑𝐹𝛼 = 𝜎𝛼𝛽𝑑𝑆𝛽, (22)
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where 𝜎𝛼𝛽(r) is the surface tensor, which is evaluated at a point on this surface element. In the
case of an isotropic stress, the stress tensor can be written as:

𝜎𝛼𝛽(r) = −𝑝(r)𝛿𝛼𝛽, (23)

where 𝑝(r) is called the pressure of the fluid at point r in space. Notice the negative sign. If we
have a fluid inside a cubic box of size 𝐿 × 𝐿 × 𝐿, the fluid will push each side of the box, with force
magnitude 𝑝𝐿2 (if 𝑝 is positive).

Let us consider a fluid inside some volume 𝑉 . 𝑉 can be enclosed by other fluid or solid walls. Let
us denote f(r) to be the force density (force per unit volume) acting on the fluid at r. The net force
acting on the fluid (by the surrounding fluid or the solid boundaries) is then given by the integral
of f over the whole fluid volume:

F = ∫
𝑉

f 𝑑𝑉 . (24)

However, from the definition of the stress tensor, the net force acting on the fluid by the boundary
can also be written as:

𝐹𝛼 = ∮
𝜕𝑉

𝜎𝛼𝛽 𝑑𝑆𝛽. (25)

Thus,

∫
𝑉

𝑓𝛼 𝑑𝑉 = ∮
𝜕𝑉

𝜎𝛼𝛽 𝑑𝑆𝛽 = ∫
𝑉

𝜕𝛽𝜎𝛼𝛽 𝑑𝑉 , (26)

and therefore,
𝑓𝛼 = 𝜕𝛽𝜎𝛼𝛽. (27)

[191]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/stress-tensor.png')
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Now we will derive the formula for the elastic stress tensor for our free energy:

ℱ[𝜙] = ∫
𝑉

{ 𝛼
2 𝜙2 + 𝛽

2 𝜙4 + 𝜅
2 |∇𝜙|2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔(𝜙,𝜕𝛼𝜙)

} 𝑑𝑉 . (28)

Suppose that we have some fluid, confined to a trapezoidal box of volume 𝑉 in space, as we can
see in the picture below. Now we can deform the fluid affinely (e.g. by shearing the box) through
some infinitesimal strain 𝛿r. In other words we displace every small patch of material at r to r+𝛿r.
Under this affine deformation, the fluid density 𝜙(r) and the volume of the box 𝑉 transform as:

𝜙(r) → 𝜙(r − 𝛿r) and 𝑉 → 𝑉 + 𝛿𝑉 . (29)

In other words, affine deformation simply translates the value of 𝜙 through space by 𝛿r. By Taylor
expanding 𝜙(r − 𝛿r), we can find:

𝜙(r − 𝛿r) = 𝜙(r) − 𝛿r ⋅ ∇𝜙⏟
𝛿𝜙

. (30)

Now we can calculate the change in the total free energy due to this affine deformation:

𝛿ℱ = ℱ[𝜙 + 𝛿𝜙] − ℱ[𝜙] (31)

= ∫
𝑉 +𝛿𝑉

𝑔(𝜙 + 𝛿𝜙, 𝜕𝛼𝜙 + 𝛿𝜕𝛼𝜙) 𝑑𝑉 − ∫
𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 (32)

= ∫
𝑉

𝑔(𝜙 + 𝛿𝜙, 𝜕𝛼𝜙 + 𝛿𝜕𝛼𝜙) 𝑑𝑉 + ∫
𝛿𝑉

𝑔(𝜙 + 𝛿𝜙, 𝜕𝛼𝜙 + 𝛿𝜕𝛼𝜙) 𝑑𝑉 − ∫
𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 (33)

Now we can Taylor expand:

𝑔(𝜙 + 𝛿𝜙, 𝜕𝛼𝜙 + 𝛿𝜕𝛼𝜙) = 𝑔(𝜙, 𝜕𝛼𝜙) + 𝛿𝜙 𝜕𝑔
𝜕𝜙 + (𝛿𝜕𝛼𝜙) 𝜕𝑔

𝜕(𝜕𝛼𝜙) (34)

In particular, the second integral becomes:

∫
𝛿𝑉

𝑔(𝜙 + 𝛿𝜙, 𝜕𝛼𝜙 + 𝛿𝜕𝛼𝜙) 𝑑𝑉 ≃ ∫
𝛿𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 , (35)

where we have neglected order ∼ 𝛿2. Thus the change in the total energy is

𝛿ℱ = ∫
𝑉

{𝛿𝜙 𝜕𝑔
𝜕𝜙 + (𝜕𝛼𝛿𝜙) 𝜕𝑔

𝜕(𝜕𝛼𝜙)} 𝑑𝑉 + ∫
𝛿𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝑑𝑉 (36)

= ∫
𝑉

{𝛿𝜙 𝜕𝑔
𝜕𝜙 + (𝜕𝛼𝛿𝜙) 𝜕𝑔

𝜕(𝜕𝛼𝜙)} 𝑑𝑉 + ∮
𝜕𝑉

𝑔(𝜙, 𝜕𝛼𝜙) 𝛿r ⋅ 𝑑S. (37)

Note that when you displace a surface element 𝑑S by 𝛿r, the volume covered by this travelling
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surface element is 𝛿r ⋅ 𝑑S. Next we can use the integration by parts on the first term:

𝛿ℱ = ∫
𝑉

{ 𝜕𝑔
𝜕𝜙 − 𝜕𝛼 ( 𝜕𝑔

𝜕(𝜕𝛼𝜙)) }𝛿𝜙 𝑑𝑉 + ∮
𝜕𝑉

𝜕𝑔
𝜕(𝜕𝛼𝜙)𝛿𝜙 𝑑𝑆𝛼 + ∮

𝜕𝑉
𝑔𝛿𝑟𝛼 𝑑𝑆𝛼 (38)

= − ∫
𝑉

𝜇𝛿𝑟𝛼𝜕𝛼𝜙 𝑑𝑉 − ∮
𝜕𝑉

𝜕𝑔
𝜕(𝜕𝛼𝜙)𝛿𝑟𝛽𝜕𝛽𝜙 𝑑𝑆𝛼 + ∮

𝜕𝑉
𝑔𝛿𝑟𝛼 𝑑𝑆𝛼 (39)

= ∫
𝑉

𝜙𝜕𝛼(𝜇𝛿𝑟𝛼) 𝑑𝑉 − ∮
𝜕𝑉

𝜙𝜇𝛿𝑟𝛼 𝑑𝑆𝛼 + ∮
𝜕𝑉

{𝑔𝛿𝛼𝛽 − (𝜕𝛼𝜙) 𝜕𝑔
𝜕(𝜕𝛽𝜙)} 𝛿𝑟𝛼 𝑑𝑆𝛽 (40)

= ∮
𝜕𝑉

{(𝑔 − 𝜙𝜇)𝛿𝛼𝛽 − (𝜕𝛼𝜙) 𝜕𝑔
𝜕(𝜕𝛽𝜙)} 𝛿𝑟𝛼 𝑑𝑆𝛽 + ∫

𝑉
(𝜙𝜕𝛼𝜇)𝛿𝑟𝛼 𝑑𝑉 (41)

In the last line we assumed the fluid to be incompressible, i.e. 𝜕𝛼𝛿𝑟𝛼 = 0. Using the first law of
thermodynamics, the change in the free energy is also equal to:

𝛿ℱ = 𝛿𝐸 − 𝑇 𝛿𝑆 = 𝛿𝑊 − 𝛿𝑄 − 𝑇 𝛿𝑆, (42)

where 𝛿𝑊 is the work done on the system, 𝛿𝑄 is the heat dissipated into the environment and
𝛿𝑆 is the increase in the system’s entropy. The heat dissipated into the environment causes the
the entropy of the environment (or heat reservoir) 𝑆𝑟 to increase. Assuming the reservoir to be
frictionless, we can write 𝛿𝑄 = 𝑇 𝛿𝑆𝑟. Thus, the change in the free energy is:

𝛿ℱ = 𝛿𝑊 − 𝑇 (𝛿𝑆 + 𝛿𝑆𝑟)⏟⏟⏟⏟⏟
=0

= 𝛿𝑊. (43)

Note that 𝛿𝑆 + 𝛿𝑆𝑟 is the change in the total entropy (i.e. entropy of the universe). For all affine
deformations, the process is time-reversible and thus should not contribute to the entropy of the
universe. Therefore, the change in the free energy is simply the work done on the system by the
external forces: 𝛿𝐹 = 𝛿𝑊 .

Now we will look at these external forces in more detail. In order to apply the affine deformation
to the system, we must exert: 1. some external surface force Fsurface to the walls (using our hands),
and/or 2. some external body force density fbody to the bulk of the fluid (such as gravity and
electric field).

Let us consider the external surface force first. The force acting on the walls by the external force
(such as our hands) is Fsurface. The force acting on the walls by the fluid is − ∮𝜕𝑉 𝜎𝛼𝛽 𝑑𝑆𝛽. Since
we assume mechanical equilibrium throughout the deformation process, the net force on the walls
has to be zero:

𝐹 surface
𝛼 − ∮

𝜕𝑉
𝜎𝛼𝛽 𝑑𝑆𝛽 = 0, for 𝛼 = 𝑥, 𝑦, 𝑧. (44)

Similar principle also applies for the external body force. Let’s consider some fluid element 𝑑𝑉
inside the bulk of the fluid. The force acting on this fluid element by the external force (such as
gravity and electric field) is fbody 𝑑𝑉 . The force acting on this fluid element by the surrounding
fluid is 𝜕𝛽𝜎𝛼𝛽 𝑑𝑉 . Since this fluid element is always in mechanical equilibrium, we also must have
the force balance:

𝑓body
𝛼 + 𝜕𝛽𝜎𝛼𝛽 = 0, for 𝛼 = 𝑥, 𝑦, 𝑧. (45)

Thus the work done by the external forces is 𝛿𝑊 = F ⋅ 𝛿r, or:

𝛿𝑊 = ∮
𝜕𝑉

𝜎𝛼𝛽𝛿𝑟𝛼 𝑑𝑆𝛽⏟⏟⏟⏟⏟⏟⏟
from external surface force

− ∫
𝑉

(𝜕𝛽𝜎𝛼𝛽)𝛿𝑟𝛼 𝑑𝑉
⏟⏟⏟⏟⏟⏟⏟

from external body force

= ∫
𝑉

𝜎𝛼𝛽⏟
stress

𝜕𝛽𝛿𝑟𝛼⏟
strain

𝑑𝑉 (46)
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Note that 𝜕𝛽𝛿𝑟𝛼 is also called the strain tensor. Now we can then equate 𝛿ℱ = 𝛿𝑊 . Comparing
the surface term, we get the elatic stress tensor:

𝜎𝛼𝛽 = (𝑔 − 𝜙𝜇)⏟
−𝑝

𝛿𝛼𝛽 − (𝜕𝛼𝜙) 𝜕𝑔
𝜕(𝜕𝛽𝜙), (47)

where we have also identified the isotropic pressure to be 𝑝 = 𝜙𝜇 − 𝑔. Equating the volume term,
we get the elastic force density:

f = −𝜙∇𝜇. (48)

One can also verify that 𝑓𝛼 = 𝜕𝛽𝜎𝛼𝛽. In the derivation above, we have assumed the fluid to be
incompressible, i.e. 𝜕𝛼𝛿𝑟𝛼 = 0, for a compressible fluid, the results remain the same.

[190]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/affine-deformation.png')

[190]:

1.3.4 Equation of state

Let us consider the shifted Landau free energy for liquid/gas phase separation:

ℱ[𝑛] = ∫ 𝑑𝑉 { 𝛼
2 (𝑛 − 𝑛𝑐)2 + 𝛽

4 (𝑛 − 𝑛𝑐)4
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓(𝑛)=bulk energy density

+𝜅
2 |∇𝑛|2}, (49)

where 𝑛𝑐, 𝛽, 𝜅 are positive and 𝛼 can be positive or negative. Here 𝑛(r) > 0 represents the absolute
number density of the fluid, rather than rescaled density 𝜙(r), which can be positive or negative.
They are related through:

𝜙(r) = 𝑛(r) − 𝑛𝑐
𝑛𝑐

. (50)

For example, the number density of water molecules in liquid water at room temperature is 𝑛 ≃
33.4 × 1027 m−3. You can think of Landau free energy as a Taylor expansion of ℱ[𝑛] around the
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critical point (𝛼 = 0, 𝑛 = 𝑛𝑐) for small 𝑛 − 𝑛𝑐. In practice, one often uses Landau free energy even
for large values of 𝑛 − 𝑛𝑐, due to its simplicity.

For 𝛼 < 0, the system favours phase separation into liquid and gas phase, whose number densities
are given by the minima of the bulk energy density 𝑓(𝑛):

𝑛𝑙 = 𝑛𝑐 + √−𝛼
𝛽 and 𝑛𝑔 = 𝑛𝑐 − √−𝛼

𝛽 , (51)

respectively. Note that the parameter 𝑛𝑐 has to be large enough such that 0 < 𝑛𝑔 < 𝑛𝑙, since we
are working with absolute number density rather than rescaled density.

In the previous section, we have derived the isotropic pressure to be:

𝑃 = 𝑛𝜇 − 𝑔, where 𝜇 = 𝛿ℱ
𝛿𝑛 and 𝑔 = 𝑓(𝑛) + 𝜅

2 |∇𝑛|2. (52)

In the bulk, the isotropic pressure is simply given by 𝑃(𝑛) = 𝑛𝑓 ′(𝑛) − 𝑓(𝑛), where 𝑓(𝑛) is the bulk
free energy density. For the Landau free energy given above, the isotropic pressure in the bulk is
given by:

𝑃(𝑛) = 𝛼𝑛(𝑛 − 𝑛𝑐) + 𝛽𝑛(𝑛 − 𝑛𝑐)3 − 𝛼
2 (𝑛 − 𝑛𝑐)2 − 𝛽

4 (𝑛 − 𝑛𝑐)4 (53)

The above equation is also called the equation of state, which relates the pressure 𝑃 to number
density 𝑛 and temperature 𝑇 (the temperature is absorbed inside the parameter 𝛼). Also note that
we can add an arbitrary constant to ℱ[𝑛] and hence to 𝑃(𝑛), which does not affect the overall
dynamics. Finally, let us define the molar volume to be 𝜈 = 1/𝑛, which is the average free volume
occupied by a single molecule. The equation of state in terms of the molar volume is:

𝑃(𝜈) = 𝛼𝜈−1(𝜈−1 − 𝑛𝑐) + 𝛽𝜈−1(𝜈−1 − 𝑛𝑐)3 − 𝛼
2 (𝜈−1 − 𝑛𝑐)2 − 𝛽

4 (𝜈−1 − 𝑛𝑐)4. (54)

The figure below shows the plot of 𝑃(𝜈) as a function of 𝜈 for 𝛼 < 0 (in some arbitrary units which
we shouldn’t worry about).

The isothermal compressibility is defined to be:

𝜅𝑇 = −1
𝜈 ( 𝜕𝜈

𝜕𝑃 )
𝑇

. (55)

𝜅𝑇 is like the resistance of the fluid against compression. As you can see in the 𝑃(𝜈) plot below,
for some range of 𝜈, the isothermal compressibility 𝜅𝑇 is negative. This signifies that the system
is unstable for this range of 𝜈. Physically, the system will spontaneously phase-separate into liquid
and gas phase. The steady (or equilibrium) state will consist of two macroscopic phases: liquid
and gas phase, separated by an interface. In this section, we assume the interface to be mostly
flat (in the next section we will generalize this to a curved interface such as droplets). To find the
densities of the bulk liquid and gas phase, we have to equate the chemical potential of the liquid
and the gas phase (otherwise current will diffuse from one phase to the other):

𝜇𝑙 = 𝜇𝑔 ⇒ 𝑓 ′(𝑛𝑙) = 𝑓 ′(𝑛𝑔). (56)

The equation above alone is not enough to determine 𝑛𝑙 and 𝑛𝑔. We also need to equate the
pressure of the liquid phase to that of the gas phase:

𝑃𝑙 = 𝑃𝑔 ⇒ 𝑛𝑙𝑓 ′(𝑛𝑙) − 𝑓(𝑛𝑙) = 𝑛𝑔𝑓 ′(𝑛𝑔) − 𝑓(𝑛𝑔). (57)
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If the pressures are not equal, the interface, separating the liquid from the gas phase, will be pushed
in the direction from high to low pressure. If we solve the two simultaneous equations above for
our symmetric Landau free energy ℱ[𝑛], we will find that the number densities of the liquid and
the gas phase are given by the following expressions

𝑛𝑙 = 𝑛𝑐 + √−𝛼
𝛽 and 𝑛𝑔 = 𝑛𝑐 − √−𝛼

𝛽 , (58)

which also happen to be the minima of the free energy ℱ[𝑛].
Now with this information, we can verify Maxwell’s construction, which states that the integral
of 𝑃(𝜈) − 𝑃𝑙 from the liquid phase 𝜈𝑙 to the gas phase 𝜈𝑔 is zero. In other words, the blue areas
between the curve 𝑃 = 𝑃(𝜈) and the line 𝑃 = 𝑃𝑙 below add up to zero. To show this, we consider
(recall 𝜈 = 1/𝑛):

∫
𝜈𝑔

𝜈𝑙

[𝑃 (𝜈) − 𝑃𝑙] 𝑑𝜈 = ∫
𝑛𝑙

𝑛𝑔

𝑃(𝑛) − 𝑃𝑙
𝑛2 𝑑𝑛 (59)

= ∫
𝑛𝑙

𝑛𝑔

𝑓 ′(𝑛)
𝑛 𝑑𝑛 − ∫

𝑛𝑙

𝑛𝑔

𝑓(𝑛)
𝑛2 𝑑𝑛 − 𝑃𝑙 ∫

𝑛𝑙

𝑛𝑔

1
𝑛2 𝑑𝑛 (60)

= [𝑓(𝑛)
𝑛 ]

𝑛𝑙

𝑛𝑔

+ ∫
𝑛𝑙

𝑛𝑔

𝑓 ′(𝑛)
𝑛2 𝑑𝑛 − ∫

𝑛𝑙

𝑛𝑔

𝑓(𝑛)
𝑛2 𝑑𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

+𝑃𝑙 ( 1
𝑛𝑙

− 1
𝑛𝑔

) (61)

= 𝑓(𝑛𝑙)
𝑛𝑙

− 𝑓(𝑛𝑔)
𝑛𝑔

+ [𝑛𝑙𝑓 ′(𝑛𝑙) − 𝑓(𝑛𝑙)] ( 1
𝑛𝑙

− 1
𝑛𝑔

) (62)

= 𝑛𝑔𝑓(𝑛𝑙) − 𝑛𝑙𝑓(𝑛𝑔) + 𝑛𝑙𝑛𝑔𝑓 ′(𝑛𝑙) − 𝑛𝑔𝑓(𝑛𝑙) − 𝑛2
𝑙 𝑓 ′(𝑛𝑙) + 𝑛𝑙𝑓(𝑛𝑙)

𝑛𝑙𝑛𝑔
(63)

= 𝑛𝑙 [𝑛𝑔𝑓 ′(𝑛𝑔) − 𝑓(𝑛𝑔)] − 𝑛𝑙 [𝑛𝑙𝑓 ′(𝑛𝑙) − 𝑓(𝑛𝑙)]
𝑛𝑙𝑛𝑔

, (64)

where we have used the fact that 𝑓 ′(𝑛𝑙) = 𝑓 ′(𝑛𝑔). Therefore the integral above becomes:

∫
𝜈𝑔

𝜈𝑙

[𝑃 (𝜈) − 𝑃𝑙] 𝑑𝜈 = 𝑃𝑔 − 𝑃𝑙
𝑛𝑔

= 0, (65)

since 𝑃𝑙 = 𝑃𝑔. Thus, we have verified Maxwell’s construction. Note that the derivation of the
Maxwell’s construction above remains valid for general double well potentials 𝑓(𝑛), which are not
necessarily symmetric.

[189]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/Maxwell-construction.png')

[189]:
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1.3.5 Convection vs diffusion

Thus we have derived the formula for the elastic stress for the given free energy. Under affine
deformation, the fluid exerts some elastic stress to the walls, and also to each other inside the bulk.
However for a general deformation, this is not the only stress present in the fluid. We also have a
viscous stress, whose coefficient is called the viscosity, which is responsible for heat dissipation.

One might also notice that the presence or absence of a mechanical stress does not affect the
Cahn-Hiliard equation:

𝜕𝜙
𝜕𝑡 = 𝑀∇2 𝛿ℱ

𝛿𝜙 (Cahn-Hiliard equation) (66)

This is because Cahn-Hiliard equation only describes the diffusion process in the binary fluid. In
general, there are two ways a fluid can move inside the system: 1) diffusion and 2) convection.

An example of diffusion process is when we put a drop of red ink inside a static and viscous solvent.
This ink will spread slowly until the whole fluid becomes homogenously red. This diffusion process
is due to the Brownian motion of the ink molecules. Typically the higher the temperature is, the
faster the diffusion process will be.

An example of convection is when we put a beach ball on a flowing river. This beach ball will move
with the same velocity as the water. If we put a drop of red ink on a flowing river, this blob of
red ink will also move with the same velocity as the water, while at the same time diffuses around
its centre of mass. To describe the convection process in a binary fluid, we need to define another
field, which is the velocity field u(r, 𝑡) (in addition to 𝜙(r, 𝑡)). The time evolution of u(r, 𝑡) will be
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described by the Navier-Stokes equation:

𝜌⏟
mass density

( 𝜕
𝜕𝑡 + u ⋅ ∇) 𝑢𝛼⏟⏟⏟⏟⏟⏟⏟

acceleration

= 𝜕𝛽𝜎𝛼𝛽⏟
force density

. (Navier-Stokes equation) (67)

In essence, the Navier-Stokes equation is just a momentum conservation or Newton’s second law.
Thus to take into account of both diffusion and convection process in a binary fluid properly, we
need to solve the coupled Cahn-Hiliard-Navier-Stokes equation:

𝜕𝜙
𝜕𝑡 + (u ⋅ ∇)𝜙 = 𝑀∇2 𝛿ℱ

𝛿𝜙 (Cahn-Hiliard equation) (68)

𝜌 ( 𝜕
𝜕𝑡 + u ⋅ ∇) 𝑢𝛼 = 𝜕𝛽𝜎𝛼𝛽 (Navier-Stokes equation) (69)

∇ ⋅ u = 0 (incompressibility condition). (70)

Notice that the first two equations are coupled through the stress tensor 𝜎𝛼𝛽, which depends on 𝜙,
and the convection term (u ⋅ ∇)𝜙.

In practice, we can also define the diffusion timescale 𝑡diffusion and the convection timescale 𝑡convection
to be:

𝑡diffusion = 𝐿2

𝑀𝛼 and 𝑡convection = 𝐿
𝑈 , (71)

where 𝐿 is the system size and 𝑈 is the typical magnitude of the fluid velocity in the system (such
the velocity of the flowing river under gravity). If 𝑡diffusion ≪ 𝑡convection, then the diffusion process
dominates over convection and the problem can be simply described by Cahn-Hiliard equation
alone.

1.3.6 Laplace pressure

Let us recall the Hamiltonian:

ℱ[𝜙] = ∫
𝑉

{ 𝛼
2 𝜙2 + 𝛽

4 𝜙4
⏟⏟⏟⏟⏟

𝑓(𝜙)

+𝜅
2 |∇𝜙|2}, (72)

where 𝑓(𝜙) is the bulk (or local) free energy density. In equilibrium, and far from any boundary
or curved interface, the density of the fluid is given by the minima of this bulk energy density. We
call this density the binodal density ±𝜙𝐵:

𝑑𝑓
𝑑𝜙 = 0 ⇒ 𝜙 = ±𝜙𝐵 where 𝜙𝐵 = √−𝛼

𝛽 . (73)

As we have seen above, for a flat interface, the equilibrium density of the fluid on either side of the
flat interface is given by the binodal densities ±𝜙𝐵. On the other hand if the interface is curved,
such as a liquid droplet surrounded by the gas phase, the density of the liquid and the gas are not
exactly at the binodals (shown in the figure below). They are in fact shifted away from the binodal
values due to Laplace pressure. Let us denote 𝜙+ to be the density of the liquid inside the droplet
and 𝜙− to be the density of the gas outside. 𝜙± will be slightly shifted away from the binodal
values, i.e.:

𝜙± = ±𝜙𝐵 + 𝜖± (for curved interface). (74)
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This is because the pressure inside the droplet will be slightly higher than that outside. The
difference in this pressure is called the Laplace pressure.

To illustrate this, let us consider a spherical liquid droplet of radius 𝑅 surrounded by gas phase,
as shown in the figure below. Let us denote 𝑃+ and 𝑃− to be the pressure inside and outside the
droplet respectively. Now let us consider the upper hemispherical surface. There are two forces
acting on this hemispherical surface. The first one is due to the pressure difference Δ𝑃 = 𝑃+ − 𝑃−
(Laplace pressure). The force acting on the upper hemispherical surface is equal to Δ𝑃 𝜋𝑅2 in
the upwards direction. The second force is due to the surface tension 𝛾: the upper hemispherical
surface is pulled by the lower hemisphere right at the equator. This force is equal to 𝛾2𝜋𝑅 in the
downwards direction. Thus balancing the two forces, we get:

𝑃+ − 𝑃− = 2𝛾
𝑅 . (75)

Note that for 𝑑-dimensional spherical droplet, the Laplace pressure is given by:

𝑃+ − 𝑃− = 𝛾(𝑑 − 1)
𝑅 . (76)

Apart from the force balance, the chemical potential inside the droplet also has to be the same
as that outside the droplet. If not, there will be a diffusive current from high chemical potential
regions to low chemical potential regions. Equating the two chemical potentials, we get:

𝜇(𝜙+) = 𝜇(𝜙−). (77)

Now from the previous section, the chemical potential is given by the formula:

𝜇 = 𝑓 ′(𝜙) − 𝜅∇2𝜙. (78)

However since we are only interested in the value of 𝜇 in the bulk (where 𝜙 is uniform), we can
ignore the gradient in 𝜙, and thus we get:

𝑓 ′(𝜙+) = 𝑓 ′(𝜙−) ⇒ 𝑓 ′(𝜙𝐵 + 𝜖+) = 𝑓 ′(−𝜙𝐵 + 𝜖−). (79)

Next, we can Taylor expand:

𝑓 ′(𝜙𝐵 + 𝜖+) = 𝑓″(𝜙𝐵)𝜖+ + 𝒪(𝜖2) (80)
𝑓 ′(−𝜙𝐵 + 𝜖−) = 𝑓″(𝜙𝐵)𝜖− + 𝒪(𝜖2). (81)

Note that since 𝑓(𝜙) is symmetric, 𝑓″(𝜙𝐵) = 𝑓″(−𝜙𝐵). Thus the equality of chemical potential
implies that 𝜖+ = 𝜖−, i.e. the values of 𝜙± are shifted by the same amount from the binodals.

Now let us go back to the Laplace pressure. From the previous section, we have the formula for
the pressure:

𝑃 = 𝜙𝜇 − 𝑔, where 𝑔 = 𝑓(𝜙) + 𝜅
2 |∇𝜙|2 and 𝜇 = 𝑓 ′(𝜙) − 𝜅∇2𝜙. (82)

Since we are only interested in the value of 𝑃 in the bulk, we can ignore the gradient terms to get:

𝑃(𝜙) = 𝜙𝑓 ′(𝜙) − 𝑓(𝜙). (83)
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Now subsituting this to the Laplace pressure equation, we get:

𝜙+𝑓 ′(𝜙+) − 𝜙−𝑓 ′(𝜙−) − 𝑓(𝜙+) + 𝑓(𝜙−) = 2𝛾
𝑅 (84)

(𝜙𝐵 + 𝜖)𝑓 ′(𝜙𝐵 + 𝜖) − (−𝜙𝐵 + 𝜖)𝑓 ′(−𝜙𝐵 + 𝜖) − 𝑓(𝜙𝐵 + 𝜖) + 𝑓(−𝜙𝐵 + 𝜖) = 2𝛾
𝑅 (85)

We can then Taylor expand for small 𝜖 and simplify to get

𝜖 = 𝛾
𝑅𝜙𝐵𝑓″(𝜙𝐵) . (86)

[186]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/Laplace-pressure.png')

[186]:

1.3.7 Droplet evaporation

Now let us consider a single spherical liquid droplet of radius 𝑅, surrounded by the gas phase, as
depicted in the figure below. The density of the liquid inside the droplet and that of the gas just
immediately outside the droplet will be shifted away from the binodal values due to the Laplace
pressure as described in the previous section. In particular, the density of the liquid inside the
droplet and that of the gas on the surface of the droplet will be 𝜙𝐵 + 𝜖 and −𝜙𝐵 + 𝜖 respectively,
where

𝜙𝐵 = √−𝛼
𝛽 , and 𝜖 = 𝛾

𝑅𝜙𝐵𝑓″(𝜙𝐵) . (87)

Very far away from the droplet, the density of the gas phase will go back to its equilibrium bulk
value, i.e. −𝜙𝐵, as depicted in the figure below. Thus, we expect a chemical potential gradient
from 𝜇𝑅 on the surface of the droplet to 0 at infinity. This chemical potential gradient will induce
a current from the surface of the droplet to infinity, which then causes the droplet to shrink.

16



Assuming the radius of the droplet 𝑅(𝑡) shrinks slowly, we can assume the chemical potential of
the gas phase to be quasi-static: ∇2𝜇 = 0. Assuming spherical symmetry, 𝜇 = 𝜇(𝑟), we then have:

1
𝑟2

𝑑
𝑑𝑟 (𝑟2 𝑑𝜇

𝑑𝑟 ) = 0 ⇒ 𝜇(𝑟) = 𝐴
𝑟 + 𝐵. (88)

Fixing the boundary conditions 𝜇(𝑅) = 𝜇𝑅 and 𝜇(∞) = 0, we can solve the integration constants
𝐴 and 𝐵 to get 𝜇(𝑟) and subsequently J(𝑟):

𝜇(𝑟) = {𝜇𝑅 , 𝑟 < 𝑅
𝜇𝑅𝑅

𝑟 , 𝑟 ≥ 𝑅 ⇒ J(𝑟) = −𝑀∇𝜇 = {0 , 𝑟 < 𝑅
𝑀𝜇𝑅𝑅

𝑟2 ̂r , 𝑟 ≥ 𝑅 . (89)

The chemical potential inside/on the surface of the droplet is:

𝜇𝑅 = 𝑓 ′(𝜙𝐵 + 𝜖) ≃ 𝑓″(𝜙𝐵)𝜖. (90)

Using conservation of mass and divergence theorem, we have:
𝑑
𝑑𝑡 [4

3𝜋𝑅3Δ𝜙] = − ∮
𝑅

J ⋅ 𝑑S, (91)

where Δ𝜙 = 2𝜙𝐵 is the density difference between the outside and the inside of the droplet. We
can solve the above equation to get the differential equation for the droplet radius 𝑅(𝑡):

𝑑𝑅
𝑑𝑡 = − 𝑀𝛾

2𝜙2
𝐵𝑅2 ⇒ 𝑅(𝑡) = [𝑅(0)3 − 3𝑀𝛾

2𝜙2
𝐵

𝑡]
1/3

. (92)

Thus in an infinite sytem, a liquid droplet is always unstable and will evaporate completely (effec-
tively the global density 𝜙0 is close to the binodal −√−𝛼

𝛽 ). However in computer simulations, the
system size is finite and a liquid droplet can be made to be stable.

[185]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/droplet-evaporation.png')

[185]:
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1.4 Wetting
In this section we will consider a liquid droplet on a flat solid surface, surrounded by the gas phase
(see figure below). In this case, we have three different interfaces: - liquid-gas interface - solid-gas
interface - solid-liquid interface,

and three different surface tension: 𝛾𝑙𝑔, 𝛾𝑠𝑔, and 𝛾𝑠𝑙 for each respective interface. The line where
all the three interfaces meet is called the contact line (indicated by the red dot in the figure below).
In our two-dimensional case, the contact line extends in the 𝑧-direction.

The contact angle 𝜃 is defined to be the angle between the tangent line to the liquid-gas interface
and the surface at the contact line at equilibrium (see figure below). If 𝜃 < 90∘, the surface is said
to be hydrophilic (in the case of water), i.e., it attracts water. If 𝜃 > 90∘, the surface is said to be
hydrophobic, i.e., it repels water.

The goal of this section is to derive the suitable boundary conditions for the density field 𝜙(r, 𝑡) at
the surface (which we assume to be at 𝑦 = 0 and 𝑦 = 𝐿) for a given contact angle 𝜃.

[184]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/contact-angle.png')

[184]:

1.4.1 Young’s equation

First we will express the contact angle 𝜃 in terms of the three surface tension: 𝛾𝑙𝑔, 𝛾𝑠𝑔, and 𝛾𝑠𝑙.
To do this let us consider one of the contact lines, indicated by the red dot in the figure below.
Note that the contact line extends infinitely in the 𝑧-direction (out of the screen). The solid-liquid
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interface tends to pull this contact line to the right with magnitude 𝛾𝑠𝑙 (per unit length of the
contact line). The gas-solid interface, on the other hand, tends to pull this contact line to the left
with magnitude 𝛾𝑠𝑔. Finally the liquid-gas interface tends to pull the contact line upwards at an
angle 𝜃, relative to the 𝑥-axis, with magnitude 𝛾𝑙𝑔. These three interfacial forces acting on a single
contact line are indicated by purple arrows in the figure below.

In equilibrium, the contact line should not move, so we balance the net force in the 𝑥-direction to
get the Young’s equation for the contact angle:

𝛾𝑠𝑔 = 𝛾𝑠𝑙 + 𝛾𝑙𝑔 cos 𝜃 ⇒ cos 𝜃 = 𝛾𝑠𝑔 − 𝛾𝑠𝑙
𝛾𝑙𝑔

. (93)

[205]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/Youngs-equation.png')

[205]:

1.4.2 Surface free energy

So far we have written down the contact angle 𝜃 in terms of the three surface tension: 𝛾𝑙𝑔, 𝛾𝑠𝑔, and
𝛾𝑠𝑙, however, we have not yet discussed how we are going to implement the contact angle 𝜃 into
our equation of motion, i.e., the Cahn-Hiliard equation. This is actually done by modifying our
free energy functional to include the contribution from the surface energy:

ℱ[𝜙] = ∫
𝑉

[ 𝛼
2 𝜙2 + 𝛽

4 𝜙4
⏟⏟⏟⏟⏟

𝑓(𝜙)

+𝜅
2 |∇𝜙|2]𝑑𝑉 − ∫

walls
ℎ𝜙 𝑑𝑆, (94)

where ℎ is some constant, which depends on the contact angle 𝜃. The last term above is a surface
integral over the two wall surfaces at 𝑦 = 0 and 𝑦 = 𝐿 (assuming they both have the same contact
angle 𝜃). Thus, ℎ acts like an external field for 𝜙 on the surface. If ℎ > 0, it is more energetically
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favourable for the value of 𝜙 to go up on the surface (compared to that in the bulk). This corresponds
to an hydrophilic surface or 𝜃 < 90∘. On the other hand if ℎ < 0, it more energetically favourable
for the value of 𝜙 to go down on the surface. This corresponds to an hydrophobic surface or 𝜃 > 90∘.

The equilibrium state of the droplet corresponds to the minimum of the free energy 𝐹[𝜙]. Let us
now consider the variation in the free energy 𝐹[𝜙], when we vary the density field 𝜙 → 𝜙 + 𝛿𝜙:

𝛿𝐹 = ∫
𝑉

[𝑓 ′(𝜙)𝛿𝜙 + 𝜅∇𝜙 ⋅ ∇𝛿𝜙]𝑑𝑉 − ∫
walls

ℎ𝛿𝜙 𝑑𝑆 (95)

= ∫
𝑉

[𝑓 ′(𝜙) − 𝜅∇2𝜙]𝛿𝜙 𝑑𝑉 + ∫
𝑉

𝜅∇ ⋅ (𝛿𝜙∇𝜙) 𝑑𝑉 − ∫
walls

ℎ𝛿𝜙 𝑑𝑆, (96)

where we have used integration by parts in the second line above. Now using divergence theorem,
the second term above becomes a surface integral over the whole system (see figure below):

∫
𝑉

𝜅∇ ⋅ (𝛿𝜙∇𝜙) 𝑑𝑉 = ∮
𝜕𝑉

𝜅𝛿𝜙∇𝜙 ⋅ n̂ 𝑑𝑆 (97)

= ∫
𝑦=0

𝜅𝛿𝜙∇𝜙 ⋅ (−ŷ) 𝑑𝑆 + ∫
𝑦=𝐿

𝜅𝛿𝜙∇𝜙 ⋅ ŷ 𝑑𝑆 + ∫
𝑥=0

𝜅𝛿𝜙∇𝜙 ⋅ (−x̂) 𝑑𝑆 + ∫
𝑥=𝐿𝑥

𝜅𝛿𝜙∇𝜙 ⋅ x̂ 𝑑𝑆
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

.

(98)

Note that n̂ is the outward unit normal to the surface (see figure below). Using periodic boundary
condition, the integral over 𝑥 = 0 and 𝑥 = 𝐿𝑥 surface vanish. Thus we end up with just the surface
integrals over 𝑦 = 0 and 𝑦 = 𝐿. Finally, the variation in the free energy is then given by:

𝛿𝐹 = ∫
𝑉

[𝑓 ′(𝜙) − 𝜅∇2𝜙]𝛿𝜙 𝑑𝑉 − ∫
𝑦=0

(𝜅 𝜕𝜙
𝜕𝑦 ∣

𝑦=0
+ ℎ)𝛿𝜙 𝑑𝑆 + ∫

𝑦=𝐿
(𝜅 𝜕𝜙

𝜕𝑦 ∣
𝑦=𝐿

− ℎ)𝛿𝜙 𝑑𝑆. (99)

Now in equilibrium, the variation in the free energy (with respect to 𝛿𝜙) is equal to zero, i.e.
𝛿𝐹 = 0. Thus the volume term and the surface terms above should be equal to zero. Equating the
volume term to zero, we get:

𝑓 ′(𝜙) − 𝜅∇2𝜙 = 0, (100)

which is the same statement as the chemical potential being equal to zero: 𝜇 = 0. Now equating
the surface terms to zero, we get a boundary condition for 𝜙 at 𝑦 = 0 and 𝑦 = 𝐿 respectively:

𝜕𝜙
𝜕𝑦 ∣

𝑦=0
= −ℎ

𝜅, and 𝜕𝜙
𝜕𝑦 ∣

𝑦=𝐿
= ℎ

𝜅. (101)

[211]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/surface-integral.png')

[211]:
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1.4.3 Densities at the walls

Now using the free energy functional given above, we will calculate the value of the density field 𝜙
at the bottom wall 𝑦 = 0. (The calculation for the top wall is similar.) For simplicity, let us assume
a homogenous liquid inside the system. The density of the liquid is equal to √−𝛼

𝛽 everywhere in
the system (except close to the walls). Assuming ℎ > 0 for now, the density of the liquid at the
walls, 𝜙wall, will be slightly higher than that in the bulk, i.e. 𝜙wall > √−𝛼

𝛽 (see figure below). Let
us now calculate the value for 𝜙wall. From the previous section, we know that in equilibrium, the
density field 𝜙(𝑦) satisfies the equation:

𝑓 ′(𝜙) − 𝜅𝑑2𝜙
𝑑𝑦2 = 0. (102)

Note that we assume the system to be homogenous along 𝑥. Now multiplying the above equation
with 𝑑𝜙

𝑑𝑦 , and then integrating over 𝑦 from 𝑦 = 0 to 𝑦 = 𝐿
2 , we get the Noether’s equation:

∫
𝐿
2

0

𝑑𝑓
𝑑𝑦 𝑑𝑦 − 𝜅

2 ∫
𝐿
2

0

𝑑
𝑑𝑦 (𝑑𝜙

𝑑𝑦 )
2

𝑑𝑦 = 0 (103)

𝑓 (𝜙 (𝐿
2 )) − 𝑓(𝜙(𝑦 = 0)) − 𝜅

2
⎡⎢
⎣

( 𝑑𝜙
𝑑𝑦 ∣

𝑦= 𝐿
2

)
2

− ( 𝑑𝜙
𝑑𝑦 ∣

𝑦=0
)

2
⎤⎥
⎦

= 0. (104)

However, we know that the value of 𝜙(𝑦) at 𝑦 = 0 is equal to 𝜙wall and the first derivative of 𝜙(𝑦) at
𝑦 = 0 is equal to −ℎ

𝜅 . Furthermore, 𝜙(𝑦) at 𝑦 = 𝐿
2 takes the bulk value √−𝛼

𝛽 and its derivative is
zero since 𝜙 is constant in the bulk (see figure below). Therefore, the Noether’s equation becomes:

𝑓 (√−𝛼
𝛽 ) − 𝑓(𝜙wall) + ℎ2

2𝜅 = 0. (105)
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Now we can subsitute the 𝑓(𝜙) = 𝛼
2 𝜙2 + 𝛽

4 𝜙4 to the equation above to get a quartic equation:

𝛼
2 𝜙2

wall + 𝛽
4 𝜙4

wall + 𝛼2

4𝛽 − ℎ2

2𝜅 = 0. (106)

We can then solve this quartic equation to get density of the fluid at the wall (i.e. at 𝑦 = 0 in this
case):

𝜙wall = ±√−𝛼
𝛽

√
1 ± Ω, where Ω = √ 2𝛽

𝜅𝛼2 ℎ. (107)

In this case, since the density of the bulk is equal to √−𝛼
𝛽 and ℎ > 0, the density of the fluid at the

wall has to be larger than √−𝛼
𝛽 . Therefore, the appropriate solution to the quartic equation is:

𝜙wall = √−𝛼
𝛽

√
1 + Ω. (108)

We can easily generalize the result above to all four different cases: ℎ > 0, ℎ < 0, and liquid or gas
bulk density. The results are summarized in the table below:

ℎ > 0 ℎ < 0
liquid 𝜙wall = √−𝛼

𝛽
√

1 + Ω 𝜙wall = √−𝛼
𝛽

√
1 + Ω

gas 𝜙wall = −√−𝛼
𝛽

√
1 − Ω 𝜙wall = −√−𝛼

𝛽
√

1 − Ω
, (109)

where,

Ω = √ 2𝛽
𝜅𝛼2 ℎ ⇔ ℎ = √𝜅𝛼2

2𝛽 Ω. (110)

[217]: Image('https://raw.githubusercontent.com/elsentjhung/cahn-hilliard-droplet/
↪master/figures/wall-density.png')

[217]:
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1.4.4 Three surface tensions

After knowing the values of 𝜙 at the walls for the four different cases, we can now compute the
three surface tensions: 𝛾𝑙𝑔, 𝛾𝑠𝑔, and 𝛾𝑠𝑙. From the previous previous section, we have derived the
liquid-gas surface tension:

𝛾𝑙𝑔 = √−8𝜅𝛼3

9𝛽2 . (111)

We are left two more surface tensions to compute.

Recall that the surface tension is the excess free energy of the interface (per surface area of the
interface). Therefore, the solid-liquid surface tension is given by (we approximate the bulk 𝑦 = 𝐿

2
to be at infinity):

𝛾𝑠𝑙 = ∫
∞

0
[𝑓(𝜙) + 𝜅

2 (𝑑𝜙
𝑑𝑦 )

2
]𝑑𝑦 − ℎ𝜙wall − ∫

∞

0
𝑓 (√−𝛼

𝛽 ) 𝑑𝑦 (112)

We can then use Noether’s equation again:

𝑓(𝜙) − 𝜅
2 (𝑑𝜙

𝑑𝑦 )
2

= 𝑓 (√−𝛼
𝛽 ) , (113)

so we get:

𝛾𝑠𝑙 = 𝜅 ∫
∞

0
(𝑑𝜙

𝑑𝑦 )
2

𝑑𝑦 − ℎ𝜙wall (114)

= 𝜅 ∫
√−𝛼/𝛽

𝜙wall

(𝑑𝜙
𝑑𝑦 ) 𝑑𝜙 − ℎ𝜙wall (115)

Using Noether’s equation again, we get:

𝛾𝑠𝑙 =
√

2𝜅 ∫
√−𝛼/𝛽

𝜙wall

√𝑓(𝜙) + 𝛼2

4𝛽 𝑑𝜙 − ℎ𝜙wall (116)

However, we know that 𝜙wall = √−𝛼
𝛽

√
1 + Ω, thus,

𝛾𝑠𝑙 =
√

2𝜅 ∫
√ −𝛼

𝛽

√ −𝛼
𝛽

√
1+Ω

√𝑓(𝜙) + 𝛼2

4𝛽 𝑑𝜙 − √𝜅𝛼2

2𝛽 Ω√−𝛼
𝛽

√
1 + Ω. (117)

Substituting 𝑓(𝜙) = 𝛼
2 𝜙2 + 𝛽

4 𝜙4, we can evaluate the integral:

𝛾𝑠𝑙 = √−2𝜅𝛼3

9𝛽2 [1 − (1 − Ω
2 )

√
1 + Ω] − √−𝜅𝛼3

2𝛽2 Ω
√

1 + Ω (118)

= 𝛾𝑙𝑔
2 [1 − (1 − Ω

2 )
√

1 + Ω] − 3𝛾𝑙𝑔
4 Ω

√
1 + Ω (119)

= 𝛾𝑙𝑔
2 − 𝛾𝑙𝑔

2 (1 + Ω)3/2. (120)
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Similarly, we can compute the solid-gas surface tension:

𝛾𝑠𝑔 =
√

2𝜅 ∫
−√ −𝛼

𝛽

−√ −𝛼
𝛽

√
1−Ω

√𝑓(𝜙) + 𝛼2

4𝛽 𝑑𝜙 + √𝜅𝛼2

2𝛽 Ω√−𝛼
𝛽

√
1 − Ω (121)

= √−2𝜅𝛼3

9𝛽2 [1 − (1 + Ω
2 )

√
1 − Ω] + √−𝜅𝛼3

2𝛽2 Ω
√

1 − Ω (122)

= 𝛾𝑙𝑔
2 − 𝛾𝑙𝑔

2 (1 − Ω)3/2. (123)

Finally, applying the Young’s equation, we get:

cos 𝜃 = 𝛾𝑠𝑔 − 𝛾𝑠𝑙
𝛾𝑙𝑔

= 1
2 [(1 + Ω)3/2 − (1 − Ω)3/2] . (124)

The equation above can be inverted (??) to get Ω in terms of 𝜃:

Ω = 2 sign (𝜋
2 − 𝜃) √cos (𝛼

3 ) [1 − cos (𝛼
3 )], where 𝛼 = cos−1 (sin2 𝜃) . (125)

Thus for a given contact angle 𝜃, we can then find the appropriate value of ℎ:

ℎ = √2𝜅𝛼2

𝛽 sign (𝜋
2 − 𝜃)

√√√
⎷

cos (
cos−1 (sin2 𝜃)

3 ) [1 − cos (
cos−1 (sin2 𝜃)

3 )] (126)

1.4.5 Computer simulations

Now we will put everything we have learnt above into practice. Let us simulate a liquid droplet
sitting on a flat solid surface with a given contact angle 𝜃. Our dynamical variable is the density
field 𝜙(r, 𝑡). In computer simulations, space is discretized into: 𝑥 → 𝑖Δ𝑥 and 𝑥 → 𝑗Δ𝑦, where
𝑖 = 0, 1, 2, … , 𝑁𝑥 − 1 and 𝑗 = 0, 1, 2, … , 𝑁𝑦 − 1. Δ𝑥 and Δ𝑦 are the lattice spacing in the 𝑥- and
𝑦-direction respectively. Ideally we require Δ𝑥 and Δ𝑦 to be much smaller than 1. The system
size is then 𝐿𝑥 = 𝑁𝑥Δ𝑥 and 𝐿𝑦 = 𝑁𝑦Δ𝑦. Similarly, time is also discretized into 𝑡 → 𝑛Δ𝑡, where
𝑛 = 0, 1, 2, … , 𝑁𝑡 − 1, where Δ𝑡 is the time step. The total time of the simulation is then 𝑁𝑡Δ𝑡.
Thus the density field becomes 𝜙(r, 𝑡) → 𝜙𝑛

𝑖𝑗, which is represented as an array in Python:

𝜙𝑖𝑗 =
⎛⎜⎜⎜⎜⎜
⎝

𝜙00 𝜙01 … 𝜙0,𝑁𝑦−1
𝜙10 𝜙11 𝜙1,𝑁𝑦−1

⋮ ⋱ ⋮
𝜙𝑁𝑥−1,0 𝜙𝑁𝑥−1,1 … 𝜙𝑁𝑥−1,𝑁𝑦−1

⎞⎟⎟⎟⎟⎟
⎠

↓ 𝑖-direction (127)

⟶ 𝑗-direction (128)

Note that the 𝑥- and 𝑦-axis are transposed. The first and second derivatives are computed numer-
ically as follow:

𝜕𝜙
𝜕𝑥 = 𝜙𝑖+1,𝑗 − 𝜙𝑖,𝑗

Δ𝑥 + 𝒪(Δ𝑥) (129)

𝜕2𝜙
𝜕𝑥2 = 𝜙𝑖+1,𝑗 − 2𝜙𝑖,𝑗 + 𝜙𝑖−1,𝑗

Δ𝑥2 + 𝒪(Δ𝑥) (130)
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The array 𝜙𝑖+1,𝑗 is then equivalent to shifting every elements inside the array 𝜙𝑖𝑗 upwards. This is
represented by the np.roll function in Python:

phi_i_plus_1 = np.roll(phi, -1, axis=0)

[77]: import numpy as np
import matplotlib.pyplot as plt

class Wetting():
# initialization
def __init__(self, theta):

# lattice parameters
self.dx, self.dy = 1.0, 1.0
self.Nx, self.Ny = 64, 32
self.dt = 0.01
self.Nt = 10000000

# parameters of the free energy
self.M, self.alpha, self.beta, self.kappa = 1.0, -1.0, 1.0, 1.0

# contact angle in radian
self.theta = theta
a = np.arccos(np.sin(self.theta)**2)
self.h = np.sqrt(2.0*self.kappa*a**2/self.beta) \

* np.sign(0.5*np.pi-self.theta) \
* np.sqrt(np.cos(a/3.0)*(1.0-np.cos(a/3.0)))

# global variables
self.phi = np.zeros((self.Nx, self.Ny))
self.mu = np.zeros((self.Nx, self.Ny))

# array of cartesian coordinates (needed for plotting)
self.x = np.arange(0, self.Nx)*self.dx
self.y = np.arange(0, self.Ny)*self.dx
self.y, self.x = np.meshgrid(self.y, self.x)

# initialize phi to be a half-spherical droplet
radius = self.Nx*self.dx/4.0
for i in range(0, self.Nx, 1):

for j in range(0, self.Ny, 1):
if (i*self.dx-0.5*self.Nx*self.dx)**2 + (j*self.dx)**2 <␣

↪radius**2:
self.phi[i,j] = np.sqrt(-self.alpha/self.beta)

else:
self.phi[i,j] = -np.sqrt(-self.alpha/self.beta)

# function to calculate second derivative
def derivative_x_x(self, field):
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field_plus = np.roll(field, -1, axis=0)
field_minus = np.roll(field, +1, axis=0)
return (field_plus - 2*field + field_minus)/(self.dx**2)

def derivative_y_y(self, field):
field_plus = np.roll(field, -1, axis=1)
field_minus = np.roll(field, +1, axis=1)

# wall boundary condition
if np.array_equiv(field, self.phi):

field_minus[:,0] = field[:,0] + self.dx*self.h/self.kappa
field_plus[:,self.Ny-1] = field[:,self.Ny-1]

else:
field_minus[:,0] = field[:,0]
field_plus[:,self.Ny-1] = field[:,self.Ny-1]

return (field_plus - 2*field + field_minus)/(self.dy**2)

def laplacian(self, field):
return self.derivative_x_x(field) + self.derivative_y_y(field)

# function to update phi
def update(self):

self.mu = self.alpha*self.phi + self.beta*self.phi*self.phi*self.phi -␣
↪self.kappa*self.laplacian(self.phi)

self.phi = self.phi + self.dt*self.M*self.laplacian(self.mu)

# simulation run
def run(self):

for nt in range(0, self.Nt, 1):
self.update()
if nt % 1000000 == 0:

phi0 = np.sum(self.phi)/(self.Nx*self.dx*self.Ny*self.dy)
print(f't = {nt*self.dt}, phi0 = {phi0}')

[78]: # hydrophilic case theta = 45 degrees
hydrophilic = Wetting(np.pi/4.0)
hydrophilic.run()

t = 0.0, phi0 = -0.59765625
t = 10000.0, phi0 = -0.5976562499999795
t = 20000.0, phi0 = -0.5976562499999944
t = 30000.0, phi0 = -0.5976562499949978
t = 40000.0, phi0 = -0.5976562499932141
t = 50000.0, phi0 = -0.5976562499823828
t = 60000.0, phi0 = -0.5976562499550506
t = 70000.0, phi0 = -0.597656249932575
t = 80000.0, phi0 = -0.5976562499109468
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t = 90000.0, phi0 = -0.5976562498893808

[91]: # hydrophobic case theta = 135 degrees
hydrophobic = Wetting(3.0*np.pi/4.0)
hydrophobic.run()

t = 0.0, phi0 = -0.59765625
t = 10000.0, phi0 = -0.5976562499999762
t = 20000.0, phi0 = -0.5976562499984726
t = 30000.0, phi0 = -0.5976562499917414
t = 40000.0, phi0 = -0.597656249988029
t = 50000.0, phi0 = -0.597656249988029
t = 60000.0, phi0 = -0.597656249988029
t = 70000.0, phi0 = -0.597656249988029
t = 80000.0, phi0 = -0.597656249988029
t = 90000.0, phi0 = -0.597656249988029

[109]: # initialize figure and movie objects
fig, ax = plt.subplots(2, 1, figsize=(6,8))

for n in range(0, 2, 1):
# set label
ax[n].set_xlabel('$x$', fontsize=14)
ax[n].set_ylabel('$y$', fontsize=14)

# set x range and y range
ax[n].set_xlim(0, hydrophilic.Nx*hydrophilic.dx)
ax[n].set_ylim(0, hydrophilic.Ny*hydrophilic.dy)

# set tick interval
ax[n].tick_params(axis='both')
ax[n].set_xticks(np.arange(0, hydrophilic.Nx, 10)*hydrophilic.dx)
ax[n].set_yticks(np.arange(0, hydrophilic.Ny, 10)*hydrophilic.dy)

# set aspect ratio
ax[n].set_aspect('equal')

# create colormap of phi
ax[0].set_title('$\\theta=45^\circ$')
colormap = ax[0].pcolormesh(hydrophilic.x, hydrophilic.y, hydrophilic.phi,␣

↪shading='auto', vmin=-1.2, vmax=1.2)
ax[0].annotate('', xy=(5.5,0), xytext=(5.5+20,0+20),␣

↪arrowprops=dict(edgecolor='red', arrowstyle='-', linestyle='--',␣
↪linewidth=1))

ax[1].set_title('$\\theta=135^\circ$')
colormap = ax[1].pcolormesh(hydrophilic.x, hydrophilic.y, hydrophobic.phi,␣

↪shading='auto', vmin=-1.2, vmax=1.2)
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ax[1].annotate('', xy=(24,0), xytext=(24-20,0+20),␣
↪arrowprops=dict(edgecolor='red', arrowstyle='-', linestyle='--',␣
↪linewidth=1))

plt.show()

[ ]:

References: 1. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd Edition (Elsevier, 1986).
2. M. E. Cates and E. Tjhung, Theory of binary fluid mixtures: from phase-separation kinetics to
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active emulsions, J. Fluid Mech. (2017). 3. T. Kruger, H. Kusumaatmaja, A. Kuzmin, O. Shardt,
G. Silva, and E. M. Viggen, The Lattice Boltzmann Method (Springer, 2017)
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