
sound_analyser

October 27, 2025

1 Analysing sound wave using fast Fourier transform
1.1 Introduction
This Case Study will introduce you to the basic principles of signal analysis using Fast Fourier
Transform (FFT) algorithm. Signal analysis covers everything from audio to electrical signal with
applications to image processing, sound engineering, telecommunications, etc. In this Case Study
we will focus specifically on audio signal/sound wave, which one can easily produce from a musical
intrument or from singing a tune. We will then analyse this audio signal using a powerful mathe-
matical algorithm, called Fast Fourier Transform or FFT, which allows us to decompose the audio
signal in terms of its constituent frequencies.

First, we will cover the theoretical aspects, starting from Fourier series (which we learnt in
MST210/MST224) to Fourier transform and discrete Fourier transform. We will then derive math-
ematically the Fast Fourier Transform algorithm. Once we have grasped the theoretical aspects,
we will move on to practical applications, which includes recording your own audio signal, which
will be then analysed using the FFT package in Numerical Python or NumPy. (Note that you are
not required to write the algorithm yourself, Python already has a library to do this for you!) For
example, one can study the frequency spectrum to identify specific frequencies in a particular audio
signal. Finally the TMA will also include some mini-projects such as writing a simple auto-tuning
software and a noise-reduction program.

By the end of this Case Study, you will have a comprehensive understanding of the Fast Fourier
Transform and its significance in signal analysis. You will be equipped with the necessary knowledge
and practical skills to apply the FFT algorithm in a variety of signal analysis problems, including
audio processing, equalization, noise reduction, music analysis, and much more. Whether you are
interested in pursuing a career in audio engineering or simply looking to enhance your knowledge
of signal analysis, this course will serve as a valuable resource to expand your understanding and
proficiency in the field. So, let’s dive in and unlock the hidden secrets of sound waves through the
power of Fast Fourier Transform!

1.2 Sound wave
A sound wave consists of compression and rarefaction of air molecules, which travels through space
with sound speed 𝑐𝑠. The figure below depicts the propagation of a sinusoidal sound wave inside an
infinitely long rectangular channel. The figure shows the snapshots of the air molecules (represented
by blue dots in the figure) at four different instantaneous time 𝑡 = 0 s, 0.001 s, 0.002 s, and 0.003 s.
The regions of high density are called the compression regions (these look like fuzzy vertical blue
bands in the figure) and the regions of low density are called the rarefaction regions. In the figure,
these bands of compression and rarefaction regions travel along the positive 𝑥-direction with speed

1

equals to the sound speed 𝑐𝑠. Note that the air particles themselves do not drift in any direction.
If you track the individual particles, e.g. the red particle in the figure below, the particles oscillate
back and forth around the same positions. In other words, a sound wave is a propagation of energy
but not mass. The wavelength of this sinusoidal sound wave is defined by the distance between two
nearest compression bands, which is equal to 𝜆 = 2 m. As we can see from the figure, after time
𝑡 = 0.003 s, the bands will have travelled a distance of 1 m. Therefore the speed of sound in this
example is equal to:

𝑐𝑠 = 1 m
0.003 s ≃ 333 ms−1. (1)

In general, the speed of sound depends on various factors such as ambient pressure and temperature.

[1]: from IPython.display import Image
Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/

↪figures/sound-wave.png')
[1]:

Now suppose that that we place a microphone at the end of the channel. The compression and
rarefaction of air will cause the diaphragm inside the microphone to vibrate. This vibration is then
converted into an electrical signal, which is shown in the figure below. The horizontal axis in the
figure represents the time 𝑡 (in units of seconds). The vertical axis represents the voltage of the

2

electrical signal produced by the microphone 𝑉 (𝑡) (in some rescaled units, which we do not need to
worry about). As we can see in this example, the audio signal in the figure below has a sinusoidal
form, which can be descibed by a trigonometric function:

𝑉 (𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙), (2)

where 𝑉 (𝑡) is the audio signal (in some rescaled units), 𝑡 is time (in seconds), 𝐴 is the amplitude,
𝜔 is the angular frequency, and 𝜙 is the phase difference. The angular frequency 𝜔 is related to the
frequency 𝑓 and period 𝑇 of the sound wave through this relation:

𝜔 = 2𝜋𝑓 = 2𝜋
𝑇 . (3)

From the plot below, we can measure the period to be 𝑇 = 0.006 s, which translates to audio
frequency of 𝑓 = 1

𝑇 ≃ 167 Hz. Hz (prounounced as Hertz) is the SI unit of frequency, defined to be
1 Hz = 1 s−1.

In the equation above, 𝑉 , 𝐴, 𝜔, 𝜙, and 𝑡 are all real. However, sometimes it might be useful to
write the audio signal in a complex form (as we shall see later in Fourier series) as follows:

𝑉 (𝑡) = 𝐶𝑒𝑖𝜔𝑡+𝐶∗𝑒−𝑖𝜔𝑡, where 𝐶 = 𝐴
2 𝑒𝑖𝜙 is the complex amplitude (the rest of the variables are real).

(4)
The star ∗ above 𝐶 indicates complex conjugate operation.

Exercise 1. Show that the complex form of 𝑉 (𝑡) in the equation above is equivalent to the
trigonometric form of 𝑉 (𝑡) in the first equation above.

[2]: Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/
↪figures/sinusoidal-wave.png')

[2]:

3

1.3 Fourier series
In the plot above, the audio signal can be described by a single trigonometric function. This is
because we have assumed the sound wave to be sinusoidal. However this is not true in general. For
example, the sound wave coming from a tuning fork is very close to a sinusoidal wave, on the other
hand, the sound wave coming from a saxophone is far from being sinusoidal.

Let us consider another audio signal from an unknown musical instrument, which is depicted in the
figure below. We can immediately tell that the signal is periodic with the same period 𝑇 = 0.006 s
(or fundamental frequency 𝑓 ≃ 167 Hz) as the one above. However, the shape of the audio signal
is much more complicated than a sinusoidal wave and cannot be simply described by a single
trigonometric function. Luckily, Fourier series allows us to decompose this periodic signal into a
sum of trigonometric functions as follows:

𝑉 (𝑡) =
∞

∑
𝑝=0

𝐴𝑝 cos(𝜔𝑝𝑡 + 𝜙𝑝), where 𝜔𝑝 = 2𝜋𝑝
𝑇 and 𝑝 = 0, 1, 2, … . (5)

Each term in the Fourier series is a simple sinusoidal wave with angular frequency 𝜔𝑝 ∈ ℝ, amplitude
𝐴𝑝 ∈ ℝ, and phase difference 𝜙𝑝 ∈ ℝ. The first non-constant term in the Fourier series corresponds
to the fundamental frequency 𝜔1 = 2𝜋

𝑇 shown by the first figure in the second row below. The
next term in the Fourier series has double the fundamental frequency 𝜔2 = 4𝜋

𝑇 and is sometimes
called the second harmonic (see the second figure in the second row below). The next next term
has triple the fundamental frequency 𝜔3 = 6𝜋

𝑇 and is sometimes called the third harmonic (see the
third figure in the second row below). By writing:

𝐴𝑝 cos(𝜔𝑝𝑡 + 𝜙𝑝) = 𝐶𝑝𝑒𝑖𝜔𝑝 + 𝐶∗
𝑝𝑒−𝑖𝜔𝑝 , where 𝐶𝑝 = 𝐴𝑝

2 𝑒𝑖𝜙𝑝 , (6)

we can write the Fourier series above in terms of the complex exponential:

𝑉 (𝑡) =
∞

∑
𝑝=−∞

𝐶𝑝𝑒𝑖𝜔𝑝𝑡, where 𝜔𝑝 = 2𝜋𝑝
𝑇 and 𝑝 ∈ ℤ. (7)

In the case of sound wave, 𝑉 (𝑡) ∈ ℝ and the complex amplitude 𝐶𝑝 satisfies 𝐶𝑝 = 𝐶∗
−𝑝. However

the complex exponential form of the Fourier series above also works for the case of 𝑉 (𝑡) ∈ ℂ, and
in this case, there is no restriction on 𝐶𝑝.

To find the complex amplitudes 𝐶𝑝’s (or Fourier coefficients) we multiply the above equation by
𝑒−𝑖𝜔𝑞𝑡 and then integrate with respect to 𝑡 over one period from 𝑡 = −𝑇

2 to 𝑡 = 𝑇
2 .

∫
𝑇 /2

−𝑇 /2
𝑉 (𝑡)𝑒−𝑖𝜔𝑞𝑡 𝑑𝑡 =

∞
∑

𝑝=−∞
𝐶𝑝 ∫

𝑇 /2

−𝑇 /2
𝑒𝑖(𝜔𝑝−𝜔𝑞)𝑡 𝑑𝑡, (8)

where 𝑝 and 𝑞 are integers. We note that the integral:

∫
𝑇 /2

−𝑇 /2
𝑒𝑖(𝜔𝑝−𝜔𝑞)𝑡 𝑑𝑡 = ∫

𝑇 /2

−𝑇 /2
𝑒𝑖 2𝜋

𝑇 (𝑝−𝑞)𝑡 𝑑𝑡 = {𝑇 if 𝑝 = 𝑞
0 if 𝑝 ≠ 𝑞 . (9)

More succintly, we can write,

∫
𝑇 /2

−𝑇 /2
𝑒𝑖(𝜔𝑝−𝜔𝑞)𝑡 𝑑𝑡 = 𝑇 𝛿𝑝𝑞, (10)

4

where the Kronecker delta 𝛿𝑝𝑞 is defined to be equal to 1 if 𝑝 = 𝑞 and 0 if 𝑝 ≠ 𝑞. Therefore,

∫
𝑇 /2

−𝑇 /2
𝑉 (𝑡)𝑒−𝑖𝜔𝑞𝑡 𝑑𝑡 =

∞
∑

𝑝=−∞
𝐶𝑝𝑇 𝛿𝑝𝑞 = 𝑇 𝐶𝑞 (11)

⇒ 𝐶𝑝 = 1
𝑇 ∫

𝑇 /2

−𝑇 /2
𝑉 (𝑡)𝑒−𝑖𝜔𝑝𝑡 𝑑𝑡. (12)

[3]: Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/
↪figures/wave.png')

[3]:

[4]: Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/
↪figures/decomposed-wave.png')

[4]:

5

1.4 Dirac delta function
Let us define the ‘top hat’ function of width 𝜖 and area 1 to be:

𝑇𝜖(𝑥) = {
1
𝜖 if − 𝜖

2 ≤ 𝑥 ≤ 𝜖
2

0 otherwise
, (13)

where 𝑥 ∈ ℝ. Clearly, the integral of 𝑇𝜖(𝑥) over 𝑥 ∈ (−∞, ∞) (or area under the curve) is equal to
1, irrespective of 𝜖. Now the Dirac delta function is defined to be the limit:

𝛿(𝑥) = lim
𝜖→0

𝑇𝜖(𝑥). (14)

Pictorially, we can imagine the width of the top hat function becoming narrower and narrower
and the height becoming higher and higher (while maintaining the area under the curve to be 1),
as we can see in the figure below. In this limit, the Dirac delta function 𝛿(𝑥 − 𝑦) has zero value
everywhere except at 𝑥 = 𝑦:

𝛿(𝑥 − 𝑦) = {0 if 𝑥 ≠ 𝑦
∞ if 𝑥 = 𝑦 , (15)

where 𝑥, 𝑦 ∈ ℝ. The Dirac delta function will be useful later in Fourier transform due to the
following properties:

∫
∞

−∞
𝛿(𝑥 − 𝑦) 𝑑𝑥 = 1 (16)

∫
∞

−∞
𝛿(𝑥 − 𝑦)𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑦). (17)

The first property follows directly from the definition of the Dirac delta function as a limit of the
top hat function.

Exercise 2. From the definition 𝛿(𝑥) = lim𝜖→0 𝑅𝜖(𝑥), prove the second property of the Dirac delta
function above.

[5]: Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/
↪figures/Dirac-delta.png')

[5]:

6

1.5 Fourier transform
In reality, the audio signal is not perfectly periodic since it might be contaminated by a background
noise. Furthermore the oscillation of the sound wave itself decays gradually to zero, so a realistic
representation of an audio signal recorded from a microphone might look something like the plot
below.

To analyse this audio signal, we shall use Fourier transform, which is an extension of the Fourier
series above by taking the limit 𝑇 → ∞ (loosely speaking, the function 𝑉 (𝑡) is no longer periodic).
First let us recall the definition of the Fourier series:

𝑉 (𝑡) =
∞

∑
𝑝=−∞

̃𝑉 (𝜔𝑝)𝑒𝑖𝜔𝑝𝑡 (Fourier series) (18)

̃𝑉 (𝜔𝑝) = 1
𝑇 ∫

𝑇
2

− 𝑇
2

𝑑𝑡 𝑉 (𝑡)𝑒−𝑖𝜔𝑝𝑡. (Fourier series coefficients). (19)

Note that we have relabelled 𝐶𝑝 → ̃𝑉 (𝜔𝑝) from the definitions given in the previous section. The
angular frequency 𝜔𝑝 is an integer multiple of 2𝜋

𝑇 , i.e.

𝜔𝑝 = 2𝜋𝑝
𝑇 , where 𝑝 = 0, ±1, ±2, … . (20)

7

Now let us consider the first equation from the Fourier series above, which we can write as

𝑉 (𝑡) =
∞

∑
𝑝=−∞

Δ𝑝 ̃𝑉 (𝜔𝑝)𝑒𝑖𝜔𝑝𝑡, (21)

since Δ𝑝 = (𝑝+1)−𝑝 = 1. Now from the definition of the angular frequency, we have Δ𝜔𝑝 = 2𝜋
𝑇 Δ𝑝,

and thus

𝑉 (𝑡) = 𝑇
2𝜋

∞
∑

𝑝=−∞
Δ𝜔𝑝 ̃𝑉 (𝜔𝑝)𝑒𝑖𝜔𝑝𝑡. (22)

Substituting the second equation from the Fourier series for ̃𝑉 (𝜔𝑝), we get:

𝑉 (𝑡) = 𝑇
2𝜋

∞
∑

𝑝=−∞
Δ𝜔𝑝 [1

𝑇 ∫
𝑇
2

− 𝑇
2

𝑑𝑡′ 𝑉 (𝑡′)𝑒−𝑖𝜔𝑝𝑡′] 𝑒𝑖𝜔𝑝𝑡 (23)

= 1
2𝜋

∞
∑

𝑝=−∞
Δ𝜔𝑝 [∫

𝑇
2

− 𝑇
2

𝑑𝑡′ 𝑉 (𝑡′)𝑒𝑖𝜔𝑝(𝑡−𝑡′)] . (24)

Finally we can take the limit 𝑇 → ∞. In this case 𝜔𝑝 becomes continuous 𝜔𝑝 → 𝜔 ∈ ℝ and the
summation over 𝜔𝑝 becomes an integral over 𝜔:

𝑉 (𝑡) = 1
2𝜋 ∫

∞

−∞
𝑑𝜔 [∫

∞

−∞
𝑑𝑡′ 𝑉 (𝑡′)𝑒𝑖𝜔(𝑡−𝑡′)] (25)

= ∫
∞

−∞
𝑑𝑡′ 𝑉 (𝑡′) [1

2𝜋 ∫
∞

−∞
𝑑𝜔 𝑒𝑖𝜔(𝑡−𝑡′)] . (26)

Note that we have swapped the order of integration in the last line. The right hand side has to be
equal to 𝑉 (𝑡), which implies the term inside the square bracket in the last line above must be the
Dirac delta function:

𝛿(𝑡 − 𝑡′) = 1
2𝜋 ∫

∞

−∞
𝑑𝜔 𝑒𝑖𝜔(𝑡−𝑡′). (27)

The above equation is also called the completeness relation. Similarly, by relabelling the integration
variables, we can also write the Dirac delta function as:

𝛿(𝜔 − 𝜔′) = 1
2𝜋 ∫

∞

−∞
𝑑𝑡 𝑒𝑖(𝜔−𝜔′)𝑡. (28)

The above equation is also called the orthogonality relation.

Now we can define the Fourier transform to be a transformation from one function 𝑉 (𝑡) to another
function ̃𝑉 (𝜔):

𝑉 (𝑡) ∶ ℝ → ℂ
Fourier transform⟶

⟵
inverse Fourier transform

̃𝑉 (𝜔) ∶ ℝ → ℂ, (29)

through the following formula:

𝑉 (𝑡) = ∫
∞

−∞
̃𝑉 (𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 (inverse Fourier transform) (30)

̃𝑉 (𝜔) = 1
2𝜋 ∫

∞

−∞
𝑉 (𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 (Fourier transform). (31)

8

Note that the independent variables 𝑡 and 𝜔 are real, but the dependent variables 𝑉 and ̃𝑉 are
complex in general. In our case, 𝑉 (𝑡) represents the audio signal and hence 𝑉 happens to be real.

Exercise 3. Show that if 𝑉 (𝑡) is real then ̃𝑉 (−𝜔) = ̃𝑉 (𝜔)∗ for all 𝜔 ∈ ℝ and vice versa.

[9]: Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/
↪figures/noisy-signal.png')

[9]:

1.6 Energy spectrum
From electromagnetism, we learnt that the rate of power dissipation is given by:

𝑃 (𝑡) = 𝑉 (𝑡)2

𝑅 , where 𝑅 is the electrical resistance. (32)

Since power is energy per unit time, the total energy dissipation is then given by the time integral

𝐸 = 1
𝑅 ∫

∞

−∞
𝑉 (𝑡)2 𝑑𝑡. (33)

Substituting the definition for Fourier transform to the above, we get:

𝐸 = 1
𝑅 ∫ 𝑑𝑡 ∫ 𝑑𝜔 ∫ 𝑑𝜔′ ̃𝑉 (𝜔) ̃𝑉 (𝜔′)𝑒𝑖(𝜔+𝜔′)𝑡 (34)

= 1
𝑅 ∫ 𝑑𝜔 ∫ 𝑑𝜔′ ̃𝑉 (𝜔) ̃𝑉 (𝜔′) ∫ 𝑑𝑡 𝑒𝑖(𝜔+𝜔′)𝑡

⏟⏟⏟⏟⏟
2𝜋𝛿(𝜔+𝜔′)

(35)

(36)

9

We perform the integration over 𝑡 first and this gives a Dirac delta function through the orthogo-
nality relation. Thus we get:

𝐸 = 2𝜋
𝑅 ∫ 𝑑𝜔 ∫ 𝑑𝜔′ ̃𝑉 (𝜔) ̃𝑉 (𝜔′)𝛿(𝜔 + 𝜔′) (37)

= 2𝜋
𝑅 ∫ 𝑑𝜔 ̃𝑉 (𝜔) ̃𝑉 (−𝜔), (38)

where we have used the second property of the Dirac delta function in the last equation.|

Since 𝑉 (𝑡) is real, we have ̃𝑉 (−𝜔) = ̃𝑉 (𝜔)∗ from the previous exercise and thus the total energy
dissipation can be written as:

𝐸 = 2𝜋
𝑅 ∫

∞

−∞
𝑑𝜔 | ̃𝑉 (𝜔)|2 (39)

Now we can define the energy spectrum to be ̃𝐸(𝜔) = | ̃𝑉 (𝜔)|2. Physically, Fourier transform allows
us to decompose an electrical signal into an infinite sum of sinusoidal oscillations with different
angular frequencies 𝜔’s. The energy spectrum ̃𝐸(𝜔) gives the energy contribution from a single
oscillation with corresponding angular frequency 𝜔.

The figure below shows the energy spectrum ̃𝐸(𝑓) as a function of frequency 𝑓 , which corresponds
to the realistic audio signal 𝑉 (𝑡), shown in the previous figure. Note that the frequency 𝑓 is related
to the angular frequency by a factor of 2𝜋, i.e. 𝜔 = 2𝜋𝑓 . As we can see in the figure below,
the energy spectrum spectrum is symmetric with respect to 𝑓 → −𝑓 (and for this reason, ̃𝐸(𝑓) is
usually plotted on the positive 𝑥-axis only). Furthermore we also observe several sharp peaks in the
energy spectrum. The first peak 𝑓 ≃ 167 Hz corresponds to the fundamental frequency of the signal.
(Although the signal is no longer periodic, it still retains some underlying periodic characteristics.)
The second peak 𝑓 ≃ 333 Hz (which is double the fundamental frequency) corresponds to the
second harmonic and so on. If the signal 𝑉 (𝑡) had been purely periodic, then the energy spectrum

̃𝐸(𝑓) would have been strictly zero everywhere except at 𝑓 = multiple integers of the fundamental
frequency.

Exercise 4. Show that the energy spectrum is symmetric, i.e. ̃𝐸(𝜔) = ̃𝐸(−𝜔).

[6]: Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/
↪figures/spectrum.png')

[6]:

10

1.7 Storing audio wave into a computer
Let’s say we record a sound on our microphone for the total duration of 𝑡𝑁 (also called the sampling
time). How is this audio signal 𝑉 (𝑡) stored inside our computer? Obviously a computer cannot
store an infinite amount of information, so the computer has to divide the signal 𝑉 (𝑡) into discrete
values 𝑉 (𝑡0), 𝑉 (𝑡1), 𝑉 (𝑡2), … , 𝑉 (𝑡𝑁−1) at discrete times 𝑡𝑛’s, as we can see in the figure below. This
also means that the time is discretized into: 𝑡 → 𝑡𝑛 = 𝑛Δ𝑡, where 𝑛 = 0, 1, 2, … , 𝑁 − 1 and Δ𝑡 is
the timestep. In the figure below, the total time (or sampling time) is 𝑡𝑁 = 0.018 s, the timestep
is Δ𝑡 = 0.001 s, and the total number of points is 𝑁 = 18. We also define the framerate to be the
total number of points per unit time. In the figure below, we can calculate the framerate to be:

framerate = 𝑁
𝑡𝑁

= 18
0.018 s = 1000 s−1. (40)

Usually, when we record a sound using recording software such as Audacity, we need to specify this
framerate. Higher framerate will give a better sound quality but the file size will also be bigger!
For a 16-bit digital audio, the values of 𝑉 ranges from −32768 to 32767 in integer steps (note that
𝑉 (𝑡) is in some rescaled units). Therefore the vertical 𝑉 -axis is also discrete.

[11]: Image('https://raw.githubusercontent.com/elsentjhung/sound-wave-analyser/master/
↪figures/digital-signal.png')

[11]:

11

1.8 Discrete Fourier transform
Now how do we perform a Fourier transform operation on the 𝑁 data points
𝑉 (𝑡0), 𝑉 (𝑡1), … , 𝑉 (𝑡𝑁−1) shown above? First let us order these 𝑁 data points as a column vector:
(𝑉 (𝑡0), 𝑉 (𝑡1), … , 𝑉 (𝑡𝑁−1))𝑇 . The first element in the column vector corresponds to the value of 𝑉
at time 𝑡0, the second element in the column vector corresponds to the value of 𝑉 at time 𝑡1, and
so on. The discrete Fourier transform of 𝑁 data points (𝑉 (𝑡0), 𝑉 (𝑡1), … , 𝑉 (𝑡𝑁−1))𝑇 in time-space
is defined to be an ordered set of 𝑁 points (̃𝑉 (𝜔0), ̃𝑉 (𝜔1), … , ̃𝑉 (𝜔𝑁−1))𝑇 in the frequency-space:

⎛⎜⎜⎜⎜
⎝

𝑉 (𝑡0)
𝑉 (𝑡1)

⋮
𝑉 (𝑡𝑁−1)

⎞⎟⎟⎟⎟
⎠

discrete Fourier transform⟶
⟵

inverse discrete Fourier transform

⎛⎜⎜⎜⎜
⎝

̃𝑉 (𝜔0)
̃𝑉 (𝜔1)
⋮

̃𝑉 (𝜔𝑁−1)

⎞⎟⎟⎟⎟
⎠

(41)

The first element in the column vector on the right hand side above corresponds to the value of ̃𝑉
at angular frequency 𝜔0, the second element corresponds to the value of ̃𝑉 at angular frequency 𝜔1
and so on. Here both times 𝑡𝑛’s and angular frequencies 𝜔𝑝’s are discrete and finite:

𝑡𝑛 = 𝑛Δ𝑡 where 𝑛 = 0, 1, 2, … , 𝑁 − 1 (42)

𝜔𝑝 = 2𝜋𝑝
𝑡𝑁

where 𝑝 = 0, 1, 2, … , 𝑁 − 1. (43)

Note that 𝑡𝑁 = 𝑁Δ𝑡 is the total duration of the audio signal. (𝑉 (𝑡0), 𝑉 (𝑡1), … , 𝑉 (𝑡𝑁−1))𝑇 and
(̃𝑉 (𝜔0), ̃𝑉 (𝜔1), … , ̃𝑉 (𝜔𝑁−1))𝑇 are defined through the following relations:

𝑉 (𝑡𝑛) =
𝑁−1
∑
𝑝=0

̃𝑉 (𝜔𝑝)𝑒𝑖𝜔𝑝𝑡𝑛 (inverse discrete Fourier transform) (44)

̃𝑉 (𝜔𝑝) = 1
𝑁

𝑁−1
∑
𝑛=0

𝑉 (𝑡𝑛)𝑒−𝑖𝜔𝑝𝑡𝑛 (discrete Fourier transform) (45)

12

Now we will show that the definition of the discrete Fourier transform above makes sense. Let us
substitute the second equation in the definition into the first equation to get:

𝑉 (𝑡𝑛) = 1
𝑁

𝑁−1
∑
𝑝=0

𝑁−1
∑
𝑚=0

𝑉 (𝑡𝑚)𝑒𝑖𝜔𝑝(𝑡𝑛−𝑡𝑚) (46)

= 1
𝑁

𝑁−1
∑
𝑚=0

𝑉 (𝑡𝑚) [
𝑁−1
∑
𝑝=0

𝑒𝑖 2𝜋
𝑁 (𝑛−𝑚)𝑝] (47)

The summation over 𝑝 inside the square brackets is a geometric sum, so we can use the formula:
𝑁−1
∑
𝑝=0

𝑟𝑝 = {
1−𝑟𝑁
1−𝑟 if 𝑟 ≠ 1

𝑁 if 𝑟 = 1 . (48)

So the term inside the square brackets becomes:
𝑁−1
∑
𝑝=0

𝑒𝑖 2𝜋
𝑁 (𝑛−𝑚)𝑝 = {

1−𝑒𝑖2𝜋(𝑛−𝑚)

1−𝑒𝑖 2𝜋
𝑁 (𝑛−𝑚) if 𝑛 ≠ 𝑚

𝑁 if 𝑛 = 𝑚
(49)

= {0 if 𝑛 ≠ 𝑚
𝑁 if 𝑛 = 𝑚 (50)

= 𝑁𝛿𝑛𝑚. (51)

Hence the right hand side in the equation above becomes

1
𝑁

𝑁−1
∑
𝑚=0

𝑉 (𝑡𝑚) [
𝑁−1
∑
𝑝=0

𝑒𝑖 2𝜋
𝑁 (𝑛−𝑚)𝑝] =

𝑁−1
∑
𝑚=0

𝑉 (𝑡𝑚)𝛿𝑛𝑚 = 𝑉 (𝑡𝑛), (52)

which verifies our definition of discrete Fourier transform and its inverse.

Exercise 5. Show that ̃𝑉 (𝜔𝑝) is periodic with period 2𝜋
Δ𝑡 , i.e., ̃𝑉 (𝜔𝑝) = ̃𝑉 (𝜔𝑝 + 2𝜋

Δ𝑡).

Since ̃𝑉 (𝜔𝑝) is periodic with period 2𝜋
Δ𝑡 , we can make the summation inside the discrete Fourier

transform a little bit more symmetric:

𝑉 (𝑡𝑛) =
𝑁/2−1
∑

𝑝=−𝑁/2
̃𝑉 (𝜔𝑝)𝑒𝑖𝜔𝑝𝑡𝑛 (inverse discrete Fourier transform) (53)

̃𝑉 (𝜔𝑝) = 1
𝑁

𝑁−1
∑
𝑛=0

𝑉 (𝑡𝑛)𝑒−𝑖𝜔𝑝𝑡𝑛 (discrete Fourier transform), (54)

where the range of the angular frequency 𝜔𝑝 is shifted to:

𝜔𝑝 = 2𝜋𝑝
𝑡𝑁

where 𝑝 = −𝑁
2 , −𝑁

2 + 1, −𝑁
2 + 2 … , −2, −1, 0, 1, 2, … , 𝑁

2 − 2, 𝑁
2 − 1. (55)

Now we will discover how the Fourier series, introduced in the beginning of this tutorial, can be
derived from discrete Fourier transform. First we write the discrete Fourier transform as follows:

̃𝑉 (𝜔𝑝) = 1
𝑁Δ𝑡

𝑁−1
∑
𝑛=0

Δ𝑡 𝑉 (𝑡𝑛)𝑒−𝑖𝜔𝑝𝑡𝑛 (56)

= 1
𝑡𝑁

𝑁−1
∑
𝑛=0

Δ𝑡 𝑉 (𝑡𝑛)𝑒−𝑖𝜔𝑝𝑡𝑛 (57)

13

Next we take the limit Δ𝑡 → 0 and 𝑁 → ∞ and the summation over 𝑡𝑛 above becomes an integral
over 𝑡:

̃𝑉 (𝜔𝑝) = 1
𝑡𝑁

∫
𝑡𝑁

0
𝑑𝑡 𝑉 (𝑡)𝑒−𝑖𝜔𝑝𝑡, (58)

and correspondingly, the inverse discrete Fourier transform becomes:

𝑉 (𝑡𝑛) =
∞

∑
𝑝=−∞

̃𝑉 (𝜔𝑝)𝑒𝑖𝜔𝑝𝑡, (59)

and thus we recover the Fourier series when we take the limit the time 𝑡𝑛 becomes continuous
𝑡𝑛 → 𝑡 ∈ ℝ.

Finally, we can also write the discrete Fourier transfrom in the matrix form as follows:

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

̃𝑉 (𝜔0)
̃𝑉 (𝜔1)
̃𝑉 (𝜔2)
⋮

̃𝑉 (𝜔𝑁−1)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

= 1
𝑁

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 ⋯ 1
1 𝑒−𝑖 2𝜋

𝑁 𝑒−𝑖 2𝜋
𝑁 2

1 𝑒−𝑖 2𝜋
𝑁 2 𝑒−𝑖 2𝜋

𝑁 4

⋮ ⋱
1 𝑒−𝑖 2𝜋

𝑁 (𝑁−1)2

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉 (𝑡0)
𝑉 (𝑡1)
𝑉 (𝑡2)

⋮
𝑉 (𝑡𝑁−1)

⎞⎟⎟⎟⎟⎟⎟
⎠

(60)

As we can see from above, if we have 𝑁 data points, we need to perform an 𝑁 × 𝑁 matrix multi-
plication. This means the number of multiplications (with the complex numbers 𝑒−𝑖 2𝜋

𝑁 , 𝑒−𝑖 4𝜋
𝑁 , 𝑒−𝑖 6𝜋

𝑁

etc.) scales as 𝑁2. However there is an efficient algorithm, called fast Fourier transform, which
brings this scaling down to 𝑁 log 𝑁 .

Exercise 6. Show that for 𝑁 = 4, the matrix form of the discrete Fourier transform can be written
as follows:

⎛⎜⎜⎜⎜⎜
⎝

̃𝑉 (𝜔0)
̃𝑉 (𝜔1)
̃𝑉 (𝜔2)
̃𝑉 (𝜔3)

⎞⎟⎟⎟⎟⎟
⎠

= 1
4

⎛⎜⎜⎜⎜
⎝

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑉 (𝑡0)
𝑉 (𝑡1)
𝑉 (𝑡2)
𝑉 (𝑡3)

⎞⎟⎟⎟⎟
⎠

(61)

1.9 Fast Fourier transform
Let us relabel 𝑉 (𝑡𝑛) → 𝑉𝑛 and ̃𝑉 (𝜔𝑝) → ̃𝑉𝑝, where 𝑛 = 0, 1, 2, … , 𝑁 − 1 and 𝑝 = −𝑁

2 , −𝑁
2 +

1, … , −1, 0, 1, … , 𝑁
2 − 1. The discrete Fourier transform becomes:

𝑉𝑛 =
𝑁/2
∑

𝑝=−𝑁/2
̃𝑉𝑝 𝑒𝑖 2𝜋

𝑁 𝑝𝑛 (inverse discrete Fourier transform) (62)

̃𝑉𝑝 = 1
𝑁

𝑁−1
∑
𝑛=0

𝑉𝑛 𝑒−𝑖 2𝜋
𝑁 𝑝𝑛 (discrete Fourier transform), (63)

Written in this way, the discrete Fourier transform (DFT) does not depend on the time discretization
parameter Δ𝑡 anymore. This is actually the form of DFT which is used in NumPy. We only need
Δ𝑡 when we are plotting 𝑉 (𝑡) as a function of time 𝑡 or plotting ̃𝑉 (𝜔) as a function of 𝜔. As we
recall from the previous section, the computation of DFT directly will involve an 𝑁 × 𝑁 matrix
multiplication and scales as 𝑁2. However, there is a trick which reduce the number of complex

14

number multiplications. First let us assume that 𝑁 can be written in powers of 2, so that 𝑁 = 2𝑠

for some positive integer 𝑠, and we define the DFT without the normalization prefactor:

̃𝑉𝑝 =
𝑁−1
∑
𝑛=0

𝑉𝑛 𝑒−𝑖 2𝜋
𝑁 𝑝𝑛 (DFT without normalization). (64)

(We can add the normalization prefactor 1/𝑁 at the end of the computation.) Now we split the
summation over 𝑛 in the DFT into even and odd terms, i.e.,

̃𝑉𝑝 = ∑
even 𝑛

𝑉𝑛 𝑒−𝑖 2𝜋
𝑁 𝑝𝑛 + ∑

odd 𝑛
𝑉𝑛 𝑒−𝑖 2𝜋

𝑁 𝑝𝑛 (65)

=
𝑁/2−1
∑
𝑛=0

𝑉2𝑛 𝑒−𝑖 2𝜋
𝑁 𝑝(2𝑛) +

𝑁/2−1
∑
𝑛=0

𝑉2𝑛+1 𝑒−𝑖 2𝜋
𝑁 𝑝(2𝑛+1) (66)

=
𝑁/2−1
∑
𝑛=0

𝑉2𝑛 𝑒−𝑖 4𝜋
𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟
𝐸̃𝑝

+𝑒−𝑖 2𝜋
𝑁 𝑝

𝑁/2−1
∑
𝑛=0

𝑉2𝑛+1 𝑒−𝑖 4𝜋
𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑂̃𝑝

. (67)

We have labelled the two sums as ̃𝐸𝑝 and 𝑂̃𝑝 respectively. We recognize that term ̃𝐸𝑝 is actually
a DFT over 𝑁/2 even data points:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉0
𝑉2
𝑉4
⋮

𝑉𝑁−2

⎞⎟⎟⎟⎟⎟⎟
⎠

DFT⟶
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

̃𝐸1
̃𝐸2
̃𝐸3
⋮

̃𝐸𝑁/2−1

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

. (68)

Similarly, 𝑂̃𝑝 is a DFT over 𝑁/2 odd data points:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉1
𝑉3
𝑉5
⋮

𝑉𝑁−1

⎞⎟⎟⎟⎟⎟⎟
⎠

DFT⟶
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑂̃1
𝑂̃2
𝑂̃3
⋮

𝑂̃𝑁/2−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (69)

You might have noticed above that ̃𝐸𝑝 and 𝑂̃𝑝 are defined over 𝑝 = 0, 1, 2, … , 𝑁
2 − 1, whereas ̃𝑉𝑝

is defined over 𝑝 = 0, 1, 2, … , 𝑁 − 1. However this should not cause any problem since ̃𝐸𝑝 and 𝑂̃𝑝
are periodic with period 𝑁/2 so that ̃𝐸𝑝+𝑁/2 = ̃𝐸𝑝 and 𝑂̃𝑝+𝑁/2 = 𝑂̃𝑝. Therefore, we obtain the
following recursion relation (Danielson–Lanczos lemma):

̃𝑉𝑝 = ̃𝐸𝑝 + 𝑒−𝑖 2𝜋
𝑁 𝑝𝑂̃𝑝

̃𝑉𝑝+𝑁/2 = ̃𝐸𝑝 − 𝑒−𝑖 2𝜋
𝑁 𝑝𝑂̃𝑝

} for 𝑝 = 0, 1, 2, … , 𝑁
2 − 1, (70)

which relates 𝑁 -point DFT recursively in terms of two 𝑁/2-point DFTs (one for the odd and one
for the even terms). In other words, we have reduced the 𝑁 × 𝑁 matrix multiplication into two

15

𝑁
2 × 𝑁

2 matrix multiplications . We can further split ̃𝐸𝑝 and 𝑂̃𝑝 into odd and even terms so the
equation above becomes:

̃𝑉𝑝 = ∑
even 𝑛

𝑉2𝑛 𝑒−𝑖 4𝜋
𝑁 𝑝𝑛 + ∑

odd 𝑛
𝑉2𝑛 𝑒−𝑖 4𝜋

𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸̃𝑝

+𝑒−𝑖 2𝜋
𝑁 𝑝(∑

even 𝑛
𝑉2𝑛+1 𝑒−𝑖 4𝜋

𝑁 𝑝𝑛 + ∑
odd 𝑛

𝑉2𝑛+1 𝑒−𝑖 4𝜋
𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑂̃𝑝

)

(71)

=
𝑁/4−1
∑
𝑛=0

𝑉4𝑛 𝑒−𝑖 8𝜋
𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟
̃𝐴𝑝

+𝑒−𝑖 4𝜋
𝑁 𝑝

𝑁/4−1
∑
𝑛=0

𝑉4𝑛+2 𝑒−𝑖 8𝜋
𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵̃𝑝

+𝑒−𝑖 2𝜋
𝑁 𝑝(

𝑁/4−1
∑
𝑛=0

𝑉4𝑛+1 𝑒−𝑖 8𝜋
𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟
̃𝐶𝑝

+𝑒−𝑖 4𝜋
𝑁 𝑝

𝑁/4−1
∑
𝑛=0

𝑉4𝑛+3 𝑒−𝑖 8𝜋
𝑁 𝑝𝑛

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐷̃𝑝

)

(72)

We have labelled the four sums as ̃𝐴𝑝, 𝐵̃𝑝, ̃𝐶𝑝, and 𝐷̃𝑝 respectively. We recognize that ̃𝐴𝑝, 𝐵̃𝑝, ̃𝐶𝑝,
and 𝐷̃𝑝 are each a DFT of 𝑁/4 data points:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉0
𝑉4
𝑉8
⋮

𝑉𝑁−4

⎞⎟⎟⎟⎟⎟⎟
⎠

DFT⟶
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

̃𝐴1
̃𝐴2
̃𝐴3

⋮
̃𝐴𝑁/4−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉2
𝑉6
𝑉10

⋮
𝑉𝑁−2

⎞⎟⎟⎟⎟⎟⎟
⎠

DFT⟶
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝐵̃1
𝐵̃2
𝐵̃3
⋮

𝐵̃𝑁/4−1

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(73)

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉1
𝑉5
𝑉9
⋮

𝑉𝑁−3

⎞⎟⎟⎟⎟⎟⎟
⎠

DFT⟶
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

̃𝐶1
̃𝐶2
̃𝐶3

⋮
̃𝐶𝑁/4−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉3
𝑉7
𝑉11

⋮
𝑉𝑁−1

⎞⎟⎟⎟⎟⎟⎟
⎠

DFT⟶
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝐷̃1
𝐷̃2
𝐷̃3
⋮

𝐷̃𝑁/4−1

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(74)

̃𝐴𝑝, 𝐵̃𝑝, ̃𝐶𝑝, and 𝐷̃𝑝 are periodic with period 𝑁/4. So to obtain ̃𝐸𝑝 and 𝑂̃𝑝 from ̃𝐴𝑝, 𝐵̃𝑝, ̃𝐶𝑝, and
𝐷̃𝑝, we use the recursion formula (Danielson-Lanczos):

̃𝐸𝑝 = ̃𝐴𝑝 + 𝑒−𝑖 4𝜋
𝑁 𝑝𝐵̃𝑝

̃𝐸𝑝+𝑁/4 = ̃𝐴𝑝 − 𝑒−𝑖 4𝜋
𝑁 𝑝𝐵̃𝑝

𝑂̃𝑝 = ̃𝐶𝑝 + 𝑒−𝑖 4𝜋
𝑁 𝑝𝐷̃𝑝

𝑂̃𝑝+𝑁/4 = ̃𝐶𝑝 − 𝑒−𝑖 4𝜋
𝑁 𝑝𝐷̃𝑝

⎫}}
⎬}}⎭

for 𝑝 = 0, 1, 2, … , 𝑁
4 − 1. (75)

Next, we use the recursion formula again to find ̃𝑉𝑝 from ̃𝐸𝑝 and 𝑂̃𝑝. So instead of dealing with
𝑁 ×𝑁 matrix multiplication, we can now just deal with 𝑁

4 × 𝑁
4 matrix multiplications and then use

the recursion formula twice to find ̃𝑉𝑝. So why stop here? We can further split ̃𝐴𝑝, 𝐵̃𝑝, ̃𝐶𝑝, and 𝐷̃𝑝
into even and odd terms and do this recursively until we get 2 × 2 DFT matrices. This algorithm is
called fast Fourier transform (FFT). Computation of FFT scales as 𝑁 log 𝑁 , in contrast to standard
DFT, which scales as 𝑁2. Although the original FFT paper requires the number of data points 𝑁
to be powers of 2, modern FFT algorithms usually do not require this condition anymore.

Below shows the illustration of the FFT algorithm for the case of 𝑁 = 8. First we shuffle the ordered
dataset (𝑉0, 𝑉1, … , 𝑉7)𝑇 , separating the even and the odd terms into upper and lower half of the
column vector. And then we shuffle again for the even and odd terms inside the upper and lower

16

half of the column vector. Next we split the column vector into 2-point column vectors: (𝑉0, 𝑉4)𝑇 ,
(𝑉2, 𝑉6)𝑇 , (𝑉1, 𝑉5)𝑇 , and (𝑉3, 𝑉7)𝑇 . Then we perform 2-point DFT on each 2-point column vectors
to get ̃𝐴𝑝, 𝐵̃𝑝, ̃𝐶𝑝, and 𝐷̃𝑝. Then using the recursion formula above (Danielson-Lanczos), we get
4-point DFTs, ̃𝐸𝑝 and 𝑂̃𝑝, from 2-point DFTs, ̃𝐴𝑝, 𝐵̃𝑝, ̃𝐶𝑝, and 𝐷̃𝑝. Finally, we apply the recursion
relation again to find the 8-point DFT, ̃𝑉𝑝, from ̃𝐸𝑝 and 𝑂̃𝑝.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉0
𝑉1
𝑉2
𝑉3
𝑉4
𝑉5
𝑉6
𝑉7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

shuffle⟶

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉0
𝑉2
𝑉4
𝑉6
𝑉1
𝑉3
𝑉5
𝑉7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

shuffle⟶

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑉0
𝑉4
𝑉2
𝑉6
𝑉1
𝑉5
𝑉3
𝑉7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

split
⟶

(𝑉0
𝑉4

) DFT⟶ (
̃𝐴0
̃𝐴1

)

(𝑉2
𝑉6

) DFT⟶ (𝐵̃0
𝐵̃1

)

recursion formula⟶
⎛⎜⎜⎜⎜⎜
⎝

̃𝐸0
̃𝐸1
̃𝐸2
̃𝐸3

⎞⎟⎟⎟⎟⎟
⎠

(𝑉1
𝑉5

) DFT⟶ (
̃𝐶0
̃𝐶1

)

(𝑉3
𝑉7

) DFT⟶ (𝐷̃0
𝐷̃1

)

recursion formula⟶
⎛⎜⎜⎜⎜⎜
⎝

𝑂̃0
𝑂̃1
𝑂̃2
𝑂̃3

⎞⎟⎟⎟⎟⎟
⎠

recursion formula⟶

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

̃𝑉0
̃𝑉1
̃𝑉2
̃𝑉3
̃𝑉4
̃𝑉5
̃𝑉6
̃𝑉7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(76)

Exercise 7. Show that the number of complex number multiplications in fast Fourier transform
algorithm scales as 𝑁 log 𝑁 .

1.10 Importing .wav file into a NumPy array
There are different audio formats in computer such as .mp3 and .wav. The difference is that the
former is a compressed file while the later is an uncompressed file. In this Tutorial, we will only
consider .wav files.

Let us now put everything we have learnt above into practice. Inside the folder ./samples/ we have
various .wav files from different notes from different musical instruments. First let us have a look at
the file called ./samples/piano-C4.wav. This is a recording of the note C4 in a piano. This note
has a fundamental frequency of 261.63 Hz. Let us now analyse this wave file below. First we need
to import the essential libraries such as numpy, matplotlib.pyplot, sys and scipy.io.wavfile
into Python, as you can see in the first few lines of the code below. The library sys is used to access
the filesystem inside our computer and the library scipy.io.wavfile is used to import and export
.wav files. Next we will open the file ./samples/piano-C4.wav and save it into a NumPy array,
called V, using the method wavefile.read('./samples/piano-C4.wav'). This method also reads
the framerate of the .wav file which we save into the variable called framerate. In this example,
the framerate is 11025 s−1, which we can confirm by printing the value into the screen. We also
need the total number of points, i.e. 𝑁 , which we can obtain by finding the length of the array V
using the method len(V). In this we get 𝑁 = 29750. Hence we can calculate the total recording
time (or sampling time) 𝑡𝑁 :

𝑡𝑁 = 𝑁
framerate ≃ 2.70 s. (77)

We also need to compute the timestep Δ𝑡:

Δ𝑡 = 𝑡𝑁
𝑁 = 1

framerate ≃ 0.0000907 s. (78)

17

At this point, the NumPy array V should contain the audio signals 𝑉 (𝑡0), 𝑉 (𝑡1), … 𝑉 (𝑡𝑁−1) as its
elements:

NumPy array V = 𝑉 (𝑡0) 𝑉 (𝑡1) 𝑉 (𝑡2) … 𝑉 (𝑡𝑁−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
length=𝑁

(79)

[10]: import numpy as np
import matplotlib.pyplot as plt
import sys
from scipy.io import wavfile

read a .wav file and store it into a numpy array
framerate, V = wavfile.read('./samples/piano-C4.wav')

print(f'framerate = {framerate} s^-1') # print the framerate into the computer␣
↪screen

N = len(V) # get the total number of points
print(f'N = {N}')

tN = N/framerate # calculate the total sampling time
print(f't_N = {tN} s')

dt = 1/framerate # calculate the timestep
print(f'dt = {dt} s')

framerate = 11025 s^-1
N = 29750
t_N = 2.6984126984126986 s
dt = 9.070294784580499e-05 s

To plot the audio signal 𝑉 (𝑡), we first need to define the time array t in Python:
NumPy array t = 𝑡0 𝑡1 𝑡2 … 𝑡𝑁−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

length=𝑁

, (80)

where 𝑡𝑛 = 𝑛Δ𝑡. Note that the array V and t must have the same length. We then use the
Matplotlib method plot(t,V) to plot 𝑉 as a function of time 𝑡 for the entire length of time, as
shown in the figure below on the left. We can also zoom in on the plot by changing the range of
the 𝑥-axis, as shown in the figure below on the right. From the figure, we can measure the period
of the oscillation to be 𝑇 ≃ 0.0038 s. This roughly corresponds to the fundamental frequency of
the C4 note which is 𝑓 = 261.6 Hz. The table below shows the musical notes of the C Major scale
(i.e. all the white keys on the piano) and their fundamental frequencies:

C4 D4 E4 F4 G4 A4 B4 C5
261.6 Hz 293.7 Hz 329.6 Hz 349.2 Hz 392.0 Hz 440.0 Hz 493.9 Hz 523.3 Hz

The distance from C4 to C5 (and similary D4 to D5 and so on) is called one octave and the
frequency is exactly doubled. For example the frequency of the note E5 would be 659.2 Hz and the
frequency of the note E3 would be 164.8 Hz.

18

[9]: t = np.arange(0, tN, dt) # define the time array

fig, ax = plt.subplots(1, 2, figsize=(12.1, 4))

for n in range(0, 2, 1):
ax[n].set_title("C4 note from a piano")
ax[n].set_xlabel('$t/$s', fontsize=14)
ax[n].set_ylabel('$V(t)$', fontsize=14)
ax[n].set_ylim(-3000, 3000) # set the range of the y-axis
ax[n].tick_params(axis='both', which='major', labelsize=12)
ax[n].plot(t, V) # plot V as a function of t

ax[0].set_xlim(0, 2.7) # set the range of the x-axis
ax[0].set_aspect(2.7/8000) # set aspect ratio
ax[1].set_xlim(0.1, 0.14)
ax[1].set_aspect(0.04/8000)

ax[1].annotate('', c='black', xy=(0.1095,-2250), xytext=(0.1045,-2250),
arrowprops=dict(edgecolor='black', facecolor='red',␣

↪arrowstyle='<->'))

ax[1].annotate('$T=0.0038$ s', c='black', fontsize=12, xy=(0.105,-2700))

plt.show()

We can compare this sound wave with the C4 note from a flute, as shown below. As we can see the
shape of the wave looks different, but the period (and hence the fundamental frequency) remains
approximately the same, i.e. they both correspond to C4.

[11]: framerate1, V1 = wavfile.read('./samples/flute-C4.wav')

N1 = len(V1) # get the total number of points

19

tN1 = N1/framerate1 # calculate the total sampling time
dt1 = 1/framerate1 # calculate the timestep

t1 = np.arange(0, tN1, dt1)

fig, ax = plt.subplots(1, 2, figsize=(12.1, 4))

for n in range(0, 2, 1):
ax[n].set_title("C4 note from a flute")
ax[n].set_xlabel('$t/$s', fontsize=14)
ax[n].set_ylabel('$V(t)$', fontsize=14)
ax[n].set_ylim(-3000, 3000)
ax[n].tick_params(axis='both', which='major', labelsize=12)
ax[n].plot(t1, V1)

ax[0].set_xlim(0, 2.7)
ax[0].set_aspect(2.7/8000)
ax[1].set_xlim(0.5, 0.54)
ax[1].set_aspect(0.04/8000)

ax[1].annotate('', c='black', xy=(0.509,-1450), xytext=(0.504,-1450),
arrowprops=dict(edgecolor='black', facecolor='red',␣

↪arrowstyle='<->'))

ax[1].annotate('$T=0.0038$ s', c='black', fontsize=12, xy=(0.505,-1900))

plt.show()

1.11 Using FFT library in NumPy
From above, we have a discrete audio signal 𝑉 (𝑡𝑛), which we stored inside a NumPy array, called
V. To find its Fourier transform, ̃𝑉 (𝜔𝑝), we write the following line of code:

20

Vtilde = numpy.fft.fft(V, norm='forward')

Basically, the method above will calculate the discrete Fourier transform of 𝑉 (𝑡𝑛), which is:

̃𝑉 (𝜔𝑝) = 1
𝑁

𝑁−1
∑
𝑛=0

𝑉 (𝑡𝑛)𝑒−𝑖 2𝜋
𝑁 𝑝𝑛, (81)

and then stored the values of ̃𝑉 (𝜔𝑝) inside another NumPy array, which we called Vtilde (you can
rename the variables to whichever you like). The option norm='forward' is used to add the 1/𝑁
normalization. Let us now have a look inside the array Vtilde:

NumPy array Vtilde = ̃𝑉 (𝜔0) ̃𝑉 (𝜔1) ̃𝑉 (𝜔2) … ̃𝑉 (𝜔𝑁/2−1) ̃𝑉 (𝜔−𝑁/2) ̃𝑉 (𝜔−𝑁/2+1) … ̃𝑉 (𝜔−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
length=𝑁

,

(82)
where 𝜔𝑝 = 2𝜋𝑝

𝑁Δ𝑡 . Notice that NumPy has arranged ̃𝑉 (𝜔𝑝) inside our array Vtilde in a slightly
peculiar way. First NumPy arranges ̃𝑉 (𝜔𝑝) in increasing order of positive 𝜔𝑝 for the first half of
the array, and then jumps to ̃𝑉 (𝜔−𝑁/2), and starts again in increasing order of negative 𝜔𝑝.

We will come back to this ordering later, but for now, we can calculate the energy spectrum ̃𝐸(𝜔)
by writing the following line of code:

Etilde = Vtilde*np.conjugate(Vtilde)

Note that the method numpy.conjugate() is used to take complex conjugate. Also note that
although ̃𝐸 is real, Python still keeps the imaginary part of ̃𝐸, which is 0 in this case. This may
cause some warning when we do the plot later (although they will still display the plot correctly).
To remove this warning, we have to take only the real part of ̃𝐸:

Etilde = np.real(Vtilde*np.conjugate(Vtilde)).

Now we want to plot the energy spectrum ̃𝐸 as a function of frequency 𝑓𝑝 = 𝜔𝑝
2𝜋 = 𝑝

𝑁Δ𝑡 . However, as
we recall above, the energy spectrum array Etilde is not arranged in increasing order of frequency,
i.e.

NumPy array Etilde = ̃𝐸(𝜔0) ̃𝐸(𝜔1) ̃𝐸(𝜔2) … ̃𝐸(𝜔𝑁/2−1) ̃𝐸(𝜔−𝑁/2) ̃𝐸(𝜔−𝑁/2+1) … ̃𝐸(𝜔−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
length=𝑁

,

(83)
Thus before we do any plotting, we need to shift each element of the array to the right by 𝑁/2.
We do this using the method:

Etilde = np.roll(Etilde, int(N/2), axis=0)

We will then get Etilde in increasing order of the frequency.

NumPy array Etilde = ̃𝐸(𝜔−𝑁/2) ̃𝐸(𝜔−𝑁/2+1) … ̃𝐸(𝜔−1) ̃𝐸(𝜔0) ̃𝐸(𝜔1) … ̃𝐸(𝜔𝑁/2−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
length=𝑁

,

(84)

Finally, we can define the frequency array f in increasing magnitude:

NumPy array f = 𝑓−𝑁/2 𝑓−𝑁/2+1 … 𝑓−1 𝑓0 𝑓1 … 𝑓𝑁/2−1 (85)
= −𝑁/2

𝑁Δ𝑡
−𝑁/2+1

𝑁Δ𝑡 … −1
𝑁Δ𝑡 0 1

𝑁Δ𝑡 … 𝑁/2−1
𝑁Δ𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

length=𝑁

, (86)

21

and then we call the method plot(f, Etilde) to plot ̃𝐸 as a function of 𝑓 , which we can see the
results in the figure below.

From the figure we can see that the energy spectrum has several peaks. The first peak at 𝑓 ≃
261.6 Hz corresponds to the fundamental frequency of the C4 note. The second peak at 𝑓 ≃ 523.2 Hz
corresponds to the first harmonic, which has the same frequency as the C5 note. The third peak
at 𝑓 ≃ 784.8 Hz correponds to the second harmonic, which has the same frequency as the G5 note.
Surprisingly, the G note is always contained inside the C note at varying degrees of proportion,
depending on the musical instrument. In fact, Bach et al. discovered that when we play the note
C and G together, they always sound nice. This is called harmony in music theory.

Exercise 8. The energy spectrum ̃𝐸 below shows a finite value at zero frequency 𝑓 = 𝜔 = 0.
What is the significance of this zero-frequency mode in the Fourier series?

[12]: N = np.shape(V)[0]
f = 1/(N*dt)*np.arange(-N/2, N/2, 1) # define the frequency array

N1 = np.shape(V1)[0]
f1 = 1/(N1*dt1)*np.arange(-N1/2, N1/2, 1)

Vtilde = np.fft.fft(V, norm='forward') # Fourier transform of V(t),␣
↪Vtilde(omega)

Vtilde1 = np.fft.fft(V1, norm='forward')

Etilde = np.real(Vtilde*np.conjugate(Vtilde)) # power spectrum of V(t),␣
↪Etilde(omega)

Etilde1 = np.real(Vtilde1*np.conjugate(Vtilde1))

Etilde = np.roll(Etilde, int(N/2), axis=0) # shift the spectrum so that the␣
↪zero frequency is in the middle

Etilde1 = np.roll(Etilde1, int(N1/2), axis=0)

fig, ax = plt.subplots(1, 2, figsize=(13.5, 4))

for n in range(0, 2, 1):
ax[n].set_xlabel('$f/$Hz', fontsize=14)
ax[n].set_ylabel('$\\tilde{E}(f)$', fontsize=14)
ax[n].set_xlim(-1000, 1000)
ax[n].tick_params(axis='both', which='major', labelsize=12)

ax[0].set_title('C4 note from a piano', fontsize=16)
ax[1].set_title('C4 note from a flute', fontsize=16)

ax[0].set_ylim(-1000, 35000)
ax[1].set_ylim(-2000, 70000)

ax[0].set_aspect((2/3)*2000/36000)
ax[1].set_aspect((2/3)*2000/72000)

22

ax[0].plot(f, Etilde)
ax[1].plot(f1, Etilde1)

plt.show()

1.11.1 References

1. Digital Audio Fundamentals, Audacity
2. Sound Examples, Dan Ellis, Columbia University
3. Playing and Recording Sound in Python, Real Python
4. Electronic Music Studios, University of Iowa

23

https://manual.audacityteam.org/man/digital_audio.html
https://www.ee.columbia.edu/~dpwe/sounds/
https://realpython.com/playing-and-recording-sound-python/
https://theremin.music.uiowa.edu/MIS.html

	Analysing sound wave using fast Fourier transform
	Introduction
	Sound wave
	Fourier series
	Dirac delta function
	Fourier transform
	Energy spectrum
	Storing audio wave into a computer
	Discrete Fourier transform
	Fast Fourier transform
	Importing .wav file into a NumPy array
	Using FFT library in NumPy
	References

